## DESCRIPTION

Taq DNA Polymerase is the most common PCR enzyme for amplifying up to 10kb IDNA templates and up to 3 kb genomic templates. However, it is not able to amplify even longer DNA fragments. To overcome this constraint, variable PCR systems have been developed by various companies, which are containing Taq DNA Polymerase and thermostable DNA Polymerase with proofreading activity. Both $i$-MAX ${ }^{T M}$ and $i-$ MAX $^{T M}| |$ DNA Polymerase are the PCR System which are developed for amplifying long and complex fragments. The first is designed for amplification of 510 kb fragments from genomic DNA. The second ( $i$-MAXTM II DNA Polymerase) can amplify even longer fragments up to 20kb from human genomic DNA, and up to 30 kb from a IDNA template). Moreover, the second have improved amplification efficiency compared to $i$-MAX ${ }^{\text {TM }}$ DNA Polymerase by improving enzyme activity. Therefore $i$-MAXTM II DNA Polymerase is a more versatile enzyme blend than $i$-MAX ${ }^{T M}$ DNA Polymerase in amplifying various templates including short and long DNA fragment or simple and complex DNA, either.

## STORAGE

Store at $-20^{\circ} \mathrm{C}$, and then stable for at least one year.

## CHARACTERISTICS

- Increased fidelity of PCR amplification, because the $i$-MAXTM II DNA Polymerase enzyme blend combines the proofreading activity of Pfu DNA Polymerase with the high processivity of Taq DNA Polymerase. - Increased yield of PCR amplification, because the accuracy of the enzyme blend reduces the number of truncated amplification products formed.
- Improved performance of long PCR, because the reaction buffer and the enzyme blend are optimized for generation of certain length products.


## APPLICATIONS

- Standard and long PCR
- PCR with difficult templates
- Cloning with TA and blunt ends


## KIT CONTENTS

| Label | $\begin{array}{r} 25261 \\ \text { (250 Units) } \end{array}$ |
| :---: | :---: |
| i-MAX II DNA Polymerase $(5 \mathrm{U} / \mu \ell)$ | 250 Units |
| 10X PCR Buffer* ( $\mathbf{w} / 20 \mathrm{mM} \mathrm{Mg}^{2+}$ ) | 1.5 ml |
| 10X $\mathrm{Mg}^{2+}$ free PCR Buffer | 1.5 ml |
| 10 mM dNTPs <br> ( $2.5 \mathrm{mM} / \mathrm{each}$ ) | $800 \mu \ell$ |
| $25 \mathrm{mM} \mathrm{Mg}{ }^{\mathbf{2 +}}$ | 1.5 ml |

[^0] $\mathrm{K}^{+}$and $\mathrm{NH}_{4}{ }^{+} ; 20 \mathrm{mM} \mathrm{Mg}^{2+}$; Enhancer solution

## GENERAL REACTION MIXTURE for PCR (total $20 \mu \ell$ reaction)

| Template | $1 \mathrm{pg}-1 \mu \mathrm{~g}$ |
| :--- | ---: |
| Primer 1 | $5-10$ pmoles |
| Primer 2 | $5-10$ pmoles |
| $i$-MAX |  |
| 10x PCR DNA Polymerase $(5 \mathrm{U} / \mu \ell)$ | $0.25-0.5 \mu \ell$ |
| dNTP Mixture $(2.5 \mathrm{mM}$ each $)$ | $2 \mu \ell$ |
| Sterilized distilled water | $2 \mu \ell$ |
|  | up to $20 \mu \ell$ |

CYCLING STEPS for SHORT and LONG FRAGMENTS

| Cycle program for fragments < 10kb |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Temp. | Time | Cycle No. |
| Initial Denaturation | 92-94 ${ }^{\circ} \mathrm{C}$ | 2-4min | 1 |
| Denaturation Annealing Extension* | $\begin{gathered} 94^{\circ} \mathrm{C} \\ 45-65^{\circ} \mathrm{C} \\ 72^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 15 \mathrm{~s}-1 \mathrm{~min} \\ 15 \mathrm{~s}-1 \mathrm{~min} \\ 1 \mathrm{~min} / 1-1.5 \mathrm{~kb} \end{gathered}$ | 25-30 |
| Final extension | $\begin{gathered} 72^{\circ} \mathrm{C} \\ 4^{\circ} \mathrm{C} \end{gathered}$ | 5-10min hold | 1 |
| *, Extension time for 30 s -1 min is sufficient for fragments < 1 kb . |  |  |  |
| Cycle program for fragments > 10kb |  |  |  |
|  | Temp. | Time | Cycle No. |
| Initial Denaturation | 92-94 ${ }^{\circ} \mathrm{C}$ | 2-4min | 1 |
| Denaturation Annealing Extension | $\begin{gathered} 94^{\circ} \mathrm{C} \\ 45-65^{\circ} \mathrm{C} \\ 72^{\circ} \mathrm{C} \end{gathered}$ | $15 \mathrm{~s}-1 \mathrm{~min}$ $15 \mathrm{~s}-1 \mathrm{~min}$ $1 \mathrm{~min} / 1-1.5 \mathrm{~kb}$ | 10 |
| Denaturation Annealing Extension | $\begin{gathered} 94^{\circ} \mathrm{C} \\ 45-65^{\circ} \mathrm{C} \\ 72^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 15 \mathrm{~s}-1 \mathrm{~min} \\ 15 \mathrm{~s}-1 \mathrm{~min} \\ 1 \mathrm{~min} / 1-1.5 \mathrm{~kb} \\ +20 \mathrm{~s} / \mathrm{cycle} \end{gathered}$ | 15-20 |
| Final extension | $\begin{aligned} & 72^{\circ} \mathrm{C} \\ & 4^{\circ} \mathrm{C} \end{aligned}$ | 5-10min hold | 1 |

Note : This CYCLING PARAMETERS serves as a guideline for PCR amplification. optimal reaction conditions such as PCR cycles, annealing temperature, extension temperature and incubation times, may vary and must be individually determined.

## PCR OPTIMIZATION

To produce high yields of specific DNA target sequences, individual reaction component concentrations (and time and temperature parameters) must be adjusted within suggested ranges for efficient amplification of specific targets.

## Template DNA

For amplifying long target fragment, it is important that you use high quality, intact, and high pure template DNA.

## Primers

PCR primers are oligonucleotide, typically 15-30 bases long, hybridizing to opposite strands and flanking the region of interest in the target DNA. A $40 \%-60 \% \mathrm{G}+\mathrm{C}$ content is recommended for both primers.

## EXPERIMENTAL INFORMATION

## - Amplification

1) Amplification of 570bp Fragment


Figure 1. Comparison of $i$-MAX ${ }^{\text {TM }}$ II DNA Polymerase and Company A's PCR System by amplifying 570bp DNA fragment (GAPDH).
Comparison of $i$-MAXTM II DNA Polymerase and Company A's PCR System by amplifying 570bp DNA fragment from variable amounts of cDNA Aliquots of $5 \mu \ell$ in $20 \mu \mathrm{l}$ reaction are loaded on $8 \%$ agarose gel. The $i-\mathrm{MAX}^{\mathrm{TM}}$ II DNA Polymerase have comparable sensitivity and amplifying performance with company A's longrange PCR System in amplifying 570bp DNA fragment. Lanes $\mathbf{M}$, 100bp Ladder DNA marker (iNtRON's); lanes $1,2^{-3}$ diluted cDNA; lane 2, $2^{-4}$ diluted cDNA; lane $3,2^{-5}$ diluted $c$ DNA; lane $4,2^{-6}$ diluted $c D N A$; lane $5,2^{-7}$ diluted cDNA
2) Amplification of 1.3 Kb Fragment


Figure 2. Comparison of $i-M A X^{T M}$ II DNA Polymerase and Company A's PCR System by amplifying 1.3 kb DNA fragment.
Comparison of $i-\mathrm{MAX}^{\text {TM }}$ II DNA Polymerase and Company A's PCR System by amplifying 1.3 kb DNA fragment from variable amounts of human genomic DNA Aliquots of $5 \mu \ell$ in $20 \mu \ell$ reaction are loaded on $8 \%$ agarose gel. The $i-\mathrm{MAX}^{\text {TM }}$ II DNA Polymerase have comparable sensitivity and amplifying performance with company A's long-range PCR System in amplifying 1.3kb DNA fragment. Lanes M, 1kb Ladder DNA marker (iNtRON's); lanes 1, 300 fg ; lane 2, 150 fg ; lane $3,75 \mathrm{fg}$; lane 4, 37.5 fg ; lane $5,18.75 \mathrm{fg}$

## 3) Amplification of $6 \mathrm{~Kb} / 20 \mathrm{~Kb}$ Fragment

## [ Panel A ]



## [Panel B]



Figure. 3. Comparison of $i-\mathrm{MAX}^{\text {TM }}$ II DNA Polymerase and Competitor A's PCR System in amplifying $6 \mathbf{k b}$ and 20kb fragment
Comparison of $i$-MAX ${ }^{\text {TM }}$ II DNA Polymerase and Company A's PCR System by amplifying $6 \mathrm{~Kb}, 20 \mathrm{~Kb}$ DNA fragment from variable amounts of $\lambda$ DNA. Aliquots of $5 \mu \ell$ in $20 \mu \ell$ reaction are loaded on $8 \%$ agarose gel. The $i-\mathrm{MAX}^{\text {TM }}$ II DNA Polymerase have comparable sensitivity and amplifying performance with company A's long-range PCR System in amplifying 6Kb, 20Kb DNA fragment. [ Pannel A ] 6 Kb product; [ Pannel B ] 20kb product
[ Pannel A ] Lanes M, גDNA EcoRI digest; lanes 1, 300 fg ; lane 2, 150 fg ; lane 3, 75 fg ; lane 4, 37.5 fg ; lane 5, 18.75 fg
[ Pannel B ] Lanes M, גDNA EcoRI digest; lanes 1, 1 ng; lane 2, 100 pg; lane 3, 10 pg ; lane 4, 1 pg; lane 5, 100 fg

## TROUBLESHOOTING GUIDE

| Problem | Possible Cause | Recommendation |
| :---: | :---: | :---: |
| Little <br> or <br> no product | Primer | - Primer concentration not optimal or primers degraded or primers degraded |
|  | Problems with starting template | - Check the concentrations, storage conditions, and quality of the starting template. |
|  | Incorrect annealing temperature or time | -Decrease annealing temperature by $2^{\circ} \mathrm{C}$ increments. |
|  | Extension time too short | - Annealing time should be between 30 and 60s. |
|  | Hot start may be necessay | -Increase the extension time by increments of 1 min . |
| Product is multi-banded or smeared |  | -Perform manual hotstrat PCR or iNtRON's hotstart PCR enzyme (i-StarMAX ${ }^{\text {TM }}$ ). |
|  | Annealing temperature too low | -Including the points mentioned above, check the facts below. |
|  | Hot start may be necessary | -Increase annealing temperature in $2^{\circ} \mathrm{C}$ increments. |
|  | Primer design not optimal |  |
|  | Too much start template |  |

We Bring The World Of Biotechnology To You SCIENTIFIC
www.bocascientific.com
(781) 686-1631
info@bocascientific.com


[^0]:    * 10× PCR BUFFER, 300 mM Tris-HCl(pH 9.0); 300 mM salts containing of

