## Interference in immunoassays a brief overview



- A perfect assay  $\rightarrow$  correct result
- B nonspecific binding of a labeled detection antibody on blocked surface  $\rightarrow$  false positive result
- C interfering protein binds detection antibody and prevents binding of the analyte  $\rightarrow$  false negative result
- D capture antibody binds detection antibody (or label of the detection antibody)  $\rightarrow$  false positive result
- E cross-linking caused by heterophilic antibodies or HAMAs (Human anti-mouse antibodies); capture antibody is linked with the detection antibody → false positive result
- F cross-reactivity of a sample protein with capture antibody  $\rightarrow$  false negative result
- G cross-reactivity of a sample protein with detection antibody  $\rightarrow$  false negative result
- H cross-reactivity of a sample protein with capture and detection antibody  $\rightarrow$  false positive result
- $\mathsf{I}\$  masking of the analyte with a sample protein  $\rightarrow$  false negative result
- $\mathsf{J}\$  HAMA binds capture antibody  $\rightarrow$  false negative result
- ${\rm K}\,$  HAMA binds detection antibody  $\rightarrow\,$  false negative result
- $\mathsf{L}\,$  binding of the interfering antibodies to the capture antibody  $\rightarrow$  false negative result
- M binding of the interfering antibodies to the detection antibody  $\rightarrow$  false negative result





Interferences can be classified due to their biochemical reasons and their impact on assay performance.

#### 1. Interference caused by antibodies from patient samples

HAMA (human anti-mouse antibodies), HAAA (human anti-animal antibodies), heterophilic antibodies and rheumatoid factors from patient samples.

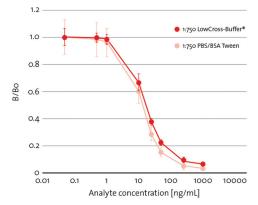
#### 2. Interference caused by endogenous components of the sample

Albumins, complement, lysozyme, fibrinogen, **α**-1 Antitrypsin, atypically high lipid-, salt- or sugar concentrations as well as atypical viscosities.

#### 3. Interference caused by assay components

Assay components - like fluorescent or enzymatic labels - can cross-react with substances from the sample or change binding properties of the assay antibodies.

#### $\rightarrow$ All these interferences can lead to false results

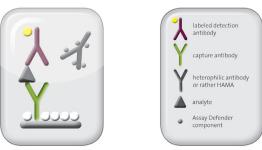

### Solutions to solve your interference problem:

#### LowCross-Buffer®

Sample and antibody diluent for minimizing nonspecific binding, cross-reactivities and matrix effects in immunoassays.

LowCross-Buffer<sup>®</sup> suppresses the low/medium affinities but keeps the highest affinities untouched at the same time.






**Calibration curve of an ELISA:** High coefficient of variation (error bar) is reduced. Greatly improved precision with LowCross-Buffer<sup>®</sup>.

#### Assay Defender®

Sample diluent for blocking HAMA and other high affinity interfering antibodies. Additionally minimizes nonspecific binding, cross-reactivities and matrix effects in immunoassays based on human or animal body fluids.





Components of Assay Defender^ prevent binding of the interfering antibody  $\rightarrow$  correct result



**CANDOR Bioscience GmbH** Simoniusstrasse 39 | 88239 Wangen | Germany info@candor-bioscience.com | www.candor-bioscience.com

# V1-11E-09-2022

www.bocascientific.com • (781) 686-1631 • info@bocascientific.com