

LipoMag for CRISPR/CAS9 – Genome Editing

Using expression plasmids on primary and hard-to-transfect cells

The following protocol is given for a single well from a 24-well tissue culture plate containing $^{\sim}1x10^{^{5}}$ cells/well in 400 μ L complete culture serum.

If a different culture plate format is used, adjust cell number and reagent amounts according to the table below:

Tissue Culture Dish	Cell Number per well	DNA Quantity (μg)	Total transfection volume per well
96-well	$0.5 - 2.0 \times 10^4$	0.125	0.2 mL
24-well	$0.5 - 1.0 \times 10^{5}$	0.5	0.5 mL
12-well	$1.0 - 2.0 \times 10^{5}$	1	1.0 mL
6-well	$2.0 - 4.0 \times 10^{5}$	2	2.0 mL
60 mm dish	$0.5 - 1.0 \times 10^6$	5	4.0 mL
90-100 mm dish	$1.0 - 2.0 \times 10^6$	10	8.0 mL
T75 flask	$2.0 - 5.0 \times 10^6$	15	12.0 mL

Table 1: recommended cell number, DNA quantity and transfection volume.

Key parameter before beginning the procedure:

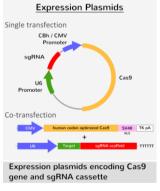
- The vector (DNA, gRNA, mRNA, protein, viral particles) and transfection reagents solutions should have an ambient temperature and be gently vortexed prior to use.
- All the complexes must be prepared in medium without serum and supplement.
- It is not recommended to use RPMI during complex preparation, prefer DMEM or PBS.
- For sensitive cells, medium can be replaced with fresh complete culture medium 4 to 6h after transfection or right after magnetofection procedure.
- The use of Magnetofection technology allows performing sequential transfections: repeat the same protocol 24h after the first transfection assay for: (1) enhancing gene expression in transfected cells and (2) transfecting more cells (3) improving genome editing capacities.

NOTES: DreamFect Gold (**DG**) and CombiMag (**CM**) should be stored respectively at -20°C and +4°C. Use **3** μ L of DG and **1** μ L of CM per μ g DNA (ratio 3:1). DNA and DG will be diluted in **50** μ L of medium without any supplement (DMEM) and mixed together before addition onto CM nanoparticles.

1. DNA solutions

<u>A. Single transfection:</u> one Plasmid encoding for both guide RNA and Cas9 endonuclease. Dilute $0.5~\mu g$ DNA in $50~\mu L$ of DMEM without any supplement.

<u>B. Co-transfection:</u> two plasmids encoding for guide RNA and Cas9 endonuclease. Prepare a mix of gRNA and Cas9 encoding plasmids in a **0.25:1** to **1:1** ratio (respectively gRNA to Cas9) for a final quantity of **0.5** μ g total DNA in **50** μ L DMEM without any supplement.


- 2. DreamFect Gold solution: Add 1.5 μL of DreamFect Gold in 50 μL DMEM without any supplement.
- **3.** CombiMag Solution: Add **0.5** μL of CombiMag in a new tube.

4. Complexes preparation

- A. Mix the DNA suspension with DreamFect Gold solution, gently pipette up and down several times.
- B. Incubate the mixture for **5 min** at room temperature.
- C. Add the complexes onto CombiMag and mix gently by pipetting up and down.
- D. Incubate the mixture for **20 min** at room temperature.

5. Transfection

- A. Add the magnetic complexes dropwise onto the cells and homogenize by gently rocking the plate side to side to ensure a uniform distribution of the mixture.
- B. Place the cells on the magnetic device and incubate at 37°C for 30 min.
- C. After **30 min** of incubation, remove the magnetic plate.
- D. Incubate the cells under your standard culture conditions for 24 to 72 h.

