

Reference Dyes, Amino-, Thiol- & Carbonyl-Reactive Dyes, Biotins & Avidins, Protein & Nucleic Acid Labeling Kits, and Reagents for Click-Chemistry!





## Content

| 1. | Fluorescence Technologies and Their Applications                                                                                                                                                                                                                                        | 3                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|    | <ul> <li>1.1 Introduction to fluorescence</li> <li>1.2 Fluorescence instruments</li> <li>1.3 Fluorescence instrument calibration and reference standards</li> <li>1.4 Selection of fluorescent reagents</li> <li>1.5 Critical factors in designing fluorescence-based assays</li> </ul> | 3<br>4<br>5<br>5<br>6                 |
| 2. | Fluorescence Reference Standards                                                                                                                                                                                                                                                        | 7                                     |
| 3. | Reactive Fluorescent Dyes                                                                                                                                                                                                                                                               | 8                                     |
|    | <ul> <li>3.1 Amine-reactive dyes</li></ul>                                                                                                                                                                                                                                              | 8<br>13<br>14<br>16<br>17<br>17<br>18 |
| 4. | Biotins & Avidins/Streptavidins                                                                                                                                                                                                                                                         | 19                                    |
| 5. | Phalloidins                                                                                                                                                                                                                                                                             | 20                                    |
| 6. | Protein Labeling Kits                                                                                                                                                                                                                                                                   | 21                                    |
|    | 6.1 Protein labeling kits for amino groups<br>6.2 Protein labeling kits for thiol groups                                                                                                                                                                                                | 21<br>22                              |
| 7. | Nucleic Acid Labeling Kits and Reagents                                                                                                                                                                                                                                                 | 22                                    |
|    | <ul> <li>7.1 The Label IT<sup>®</sup> Nucleic Acid Labeling Kits</li> <li>7.2 Nucleic acid labeling by PCR</li> <li>7.3 Nucleic acid labeling by nick translation</li> <li>7.4 Fluorescently labeled dUTP nucleotides</li> </ul>                                                        | 22<br>25<br>25<br>25                  |
| 8. | Kits and Reagents for Click-Chemistry                                                                                                                                                                                                                                                   | 26                                    |
|    | <ul><li>8.1 Oligonucleotide labeling by Click-Chemistry</li><li>8.2 Fluorescent azides</li><li>8.3 Non-fluorescent azides</li></ul>                                                                                                                                                     | 26<br>27<br>27                        |
| 9. | Contact and Support                                                                                                                                                                                                                                                                     | 28                                    |

# For Research Use Only!

## **1. Fluorescence Technologies and Their Applications**

### **1.1 Introduction to fluorescence**

Fluorescence is the molecular absorption of light energy at one wavelength and its nearly instantaneous re-emission at another wavelength (typically longer). Light is absorbed by molecules in about 10<sup>-15</sup> seconds which causes electrons to become excited to a higher electronic state. The electrons remain in the excited state for about 10<sup>-8</sup> seconds, and then return to the ground state assuming all of the excess energy is not lost by collisions with other molecules. Energy is emitted during the time when electrons return to their ground state. Emitted light always has a longer wavelength than the absorbed light due to limited energy loss by the molecule prior to emission. This process is illustrated in **Figure 1.** For illustration purpose, <u>http://www.olympusmicro.com/primer/java/jablonski/</u> provides a live demonstration of the fluorescence process.



Figure 1. Jablonski diagram illustrating the creation of fluorescence

Fluorescent compounds have two characteristic spectra: an excitation spectrum (the wavelength and amount of light absorbed) and an emission spectrum (the wavelength and amount of light emitted). Both absorption and radiation (emission) of energy are unique characteristics of a particular molecule during the fluorescence process. Measurement of fluorescence is chosen for its extraordinary sensitivity, high specificity, simplicity, and low cost as compared to other analytical modes. Fluorescence measurements can be 10-1000-fold more sensitive than absorbance measurements. It is a widely accepted and powerful technique that is used for a variety of environmental, industrial, and biotechnology applications. It is a valuable analytical tool for both quantitative and qualitative analyses.

- *High Sensitivity:* Limits of detection largely depend on the properties of the molecule and surrounding environments being measured. ppb (parts per billion) or even ppt (parts per trillion) detection limit is achievable for most analytes. This extraordinary sensitivity allows the reliable detection of fluorescent materials even when small sample sizes are being used.
- Low Interference: Spectrophotometric measurement of light absorption by an analyte is prone to interference problems because many materials absorb light, making it difficult to isolate the targeted analyte in a complex matrix. Fluorimetric measurements are highly specific and less susceptible to interferences because much fewer materials absorb and also emit light (fluoresce).
- Large Dynamic Range: Fluorescence output is linear to sample concentration over a very broad range. Fluorimetric measurements can be used over three to six magnitudes of concentration without sample dilution or modification of the sample cell.

• *High Throughput:* Fluorimetric measurement is a relatively simple analytical technique. Its high sensitivity and low interference reduce or eliminate the sample preparation procedures that often require to concentrate analytes or to remove interferences from samples prior to analysis. Most fluorescence-based assays can be automated for high throughput screening applications.

Fluorescence is a technology that is now used routinely in life science research. Fluorescence reagents are used extensively to trace the presence of biomolecules in cells and other biological systems. The great advancement of fluorescence reagents has promoted a host of more complex fluorescence technologies such as fluorescence resonance energy transfer (FRET), time-resolved fluorescence (TRF), fluorescence polarization (FP), fluorescence recovery after photobleaching (FRAP), fluorescence activated cell sorting (FACS), fluorescence correlation spectroscopy (FCS), etc. Excitation and emission wavelength, fluorescence quantum yield, fluorescence lifetime, size, photostability, and biological functionality are important factors to be considered in selection of a desired fluorescent probe for your applications.

### **1.2 Fluorescence instruments**

There are three primary kinds of instruments that measure fluorescence: spectrofluorometers (e.g., fluorometers, flow cytometers, and microplate readers), fluorescence scanners (e.g., equipment for electrophoresis and microarrays), and fluorescence imagers (e.g., microscopes). A generic fluorescence detection system consists of the following essential components:

- Light Source: The light source provides the energy that excites the compound of interest by emitting light. Light sources include xenon lamps, high pressure mercury vapor lamps, xenon-mercury arc lamps, lasers, and LEDs. Lamps emit a broad range of light that has more wavelengths than those required to excite the compound. Xenon lamps are very versatile and powerful, providing light output from 190-1200 nm. Mercury vapor lamps are usually more intense than xenon lamps, but the intensity is concentrated in wavelengths of the Hg spectrum. Convenient and inexpensive tunable lasers have long been sought for spectroscopic uses. Lasers and LEDs emit more specific wavelengths. Most fluorescence instruments are equipped with 488 nm excitation of an Argon laser.
- *Excitation Filter:* The excitation filter is used to screen out the wavelengths of light not absorbed by the compound being measured. This filter allows a selected band of light energy to pass through and excite the sample. It blocks other wavelengths, especially those in the emission spectrum.
- Optical Filter: Although more monochromator-based scanning fluorescence instruments are becoming available, there are many fluorescence instruments that still require filters. Optical filters are chosen to be optimal for each application, cost effective, and durable. Filters are used to selectively pass a portion of the ultraviolet or visible spectrum. In combination with a light source, the excitation filter allows only light which excites the molecule of interest to strike the sample. The emission filter allows the fluorescence from the sample to pass to the detector and blocks stray light from the light source or interfering components in the sample. For technical details of optical filters, please visit the filter manufacturers' websites.
- *Photodetector:* The detection limit of a fluorescence instrument largely depends upon the detector that it uses. There are three major classes of photodetectors: photoemissive devices (e.g., photomultiplier tube), charge-coupled devices (CCD), and photoconductive devices (e.g., light-dependent resistor). For technical details, please visit the manufacturers' websites.

There is a large number of innovative fluorescence instruments developed for biological applications. To choose an appropriate fluorescence instrument for your research, there are a few critical factors. Sensitivity, dynamic range, stability, and throughput are important instrument factors to be considered.

- Sensitivity: Sensitivity of a fluorometer refers to the minimum detectable quantity of a compound of
  interest under specified instrument conditions. It is related to two factors: signal-to-noise and signalto-blank. Practically, sensitivity means the minimum concentration that can be measured above
  background fluorescence of the interferences. Note that when comparing two instruments for
  sensitivity, absolute numbers are meaningless. One cannot simply read a sample and a blank in
  two instruments and say the instrument with the "highest" numbers is more sensitive.
- *Signal-to-Noise:* Signal refers to the reading of light passed through a sample. Noise refers to the output from the instrument's electronics, which is present whether or not a sample is being read.

- Signal-to-Blank: This is related to signal-to-noise but not the same. Signal refers to the reading of a sample. Blank refers to the matrix liquid containing none of the compound to be measured and scattered light. Signal-to-blank ratio can be determined by measuring blank against sample concentration and determining the ratio. Signal-to-blank ratio can be improved by employing better optics for the specific chemistry. A comparison of minimum detection limits among fluorometers is often made by using a stable fluorescent compound as a reference standard. This can work well in many cases, provided the instruments are properly and "equivalently" set up and operated. The standard must be pure and properly diluted and stable. In this brochure an example for a fluorescence reference standard kit is listed for fluorescence instrument calibration. The compounds are carefully chosen and purified, and it is guaranteed that these dyes give the same corrected fluorescence spectra from batch to batch. The fluorescence instrument calibration kit contains a set of stable and water-soluble dyes to cover the full fluorescence spectrum.
- Dynamic Range: Dynamic range refers to the range of concentrations an instrument can read, from the minimum to the maximum detectable. The minimum detectable concentration is determined by signal-to-noise and signal-to-blank ratios. The maximum detectable concentration is determined by the compound's chemistry and by factors such as instrument sensitivity ranges, optical path length, specificity of optical filters, etc.
- Instrument Stability: An electronically stable fluorescence instrument is especially important to produce consistent analytical results over long periods of time.
- Instrument Throughput: The throughput of a fluorescence instrument becomes increasingly important. High-throughput screening of drug molecules has become an essential part in drug discovery. There are many advanced fluorescence detection systems dedicated to drug discovery applications, e.g., IN Cell Analysis Systems and LEADseeker (Amersham Biosciences), FLIPR™ microplate reader (Molecular Devices Corporation), ArrayScan<sup>®</sup> VTI HCS Reader (Cellomics, Inc.), ImageTrak™ Epi-Fluorescence System, and ViewLux CCD Imager (Perkin-Elmer Corporation).

### **1.3 Fluorescence instrument calibration and reference standards**

Fluorescence is a relative measurement and the optics and electronics of each instrument vary, from manufacturer to manufacturer, even among instruments from the same manufacturer. A fluorescence instrument must be calibrated and recalibrated whenever the optics or filters are changed. As discussed above, fluorescence is subject to temperature and other environmental effects. It is important to calibrate the fluorometer in conditions as close as possible to the actual conditions for your study. Sample readings are only as accurate as the standard and blank used to calibrate the instrument. It is important to be rigorous in laboratory procedures, such as cleaning labware and carefully preparing standards.

Most fluorescence instruments can be calibrated with well-characterized stable fluorescent dyes. We offer a number of fluorescence reference standard compounds for fluorescence instrument calibration. These products are carefully chosen and purified, and we guarantee that these compounds give the same corrected fluorescence spectra from batch to batch. The AnaStandard<sup>™</sup> fluorescence instrument calibration kit contains a set of stable and water-soluble dyes to cover the full fluorescence spectrum. All the dyes in the kit are water soluble, and have similar fluorescence quantum yields and photostabilities in water or aqueous buffer. These characteristics make the kits good choices for both calibrating fluorescence instruments and trouble-shooting fluorescence assays.

### **1.4 Selection of fluorescent reagents**

Fluorescence is a technology that is now used routinely in life science research. Fluorescence reagents are used extensively to trace the presence of biomolecules in cells and other biological systems. The great advance of fluorescence reagents has promoted a host of more complex fluorescence technologies such as fluorescence resonance energy transfer (FRET), time-resolved fluorescence (TRF), fluorescence polarization (FP), fluorescence recovery after photobleaching (FRAP), fluorescence activated cell sorting (FACS), fluorescence correlation spectroscopy (FCS), etc. Excitation and emission wavelength, fluorescence quantum yield, fluorescence lifetime, size, photostability, and biological functionality are important factors to be considered in selection of a desired fluorescent probe for your applications. Besides

#### © MoBiTec GmbH, 2016

the fluorescence instrument discussed above, fluorescent reagents are the most critical factor in the successful use of fluorescence technologies. There are several factors that need to be considered in selection of appropriate fluorescent reagents for your assays.

- Functionality: There are two classes of fluorescent probes used in biological assays. Reactive fluorescent dyes are used to label target biomolecules such as antibodies, avidins, nucleotides, and peptides for tracing biochemical processes. Nonreactive fluorescent dyes are used to track biological events through their fluorescence changes that respond to the biological events of interest. Fluorescence changes are measured in three essential modes: fluorescence intensity, fluorescence lifetime, and fluorescence polarization. Fluorescence polarization and fluorescence lifetime get more attentions in recent years.
- Excitation and Emission Wavelength: There are many factors to be considered in selection of appropriate excitation and emission wavelengths, e.g., the light source and filters of the fluorescence instrument used, and the absorption and emission of undesired impurities in the analyte. In general, longer wavelengths tend to give better sensitivity. "Note that most excitation and emission maxima given in the tables in this brochure are determined in ethanol, DMSO, or DMF and may differ from values determined in other solvents. However, in most cases the difference will be negligible."
- Band Shape and Width: The shape of the excitation and emission spectra is an important component in multiplexing applications. For organic dyes, both excitation and emission spectra usually have multiple peaks or shoulders as well as gradually diminishing tails to the red of the last peak. Inorganic materials (such as lanthanide complexes and quantum dots) display extremely symmetrical and narrow spectra that are very useful for multiplexing applications.
- Stokes Shift: The Stokes shift is the difference between the absorption peak and the emission peak for fluorophores. Larger Stokes shift is always preferred as long as other properties of fluorescent probes are not compromised. Larger Stokes shift allows the use of broad excitation and emission filters that do not overlap, which increases brightness and sensitivity. Fluorescent probes of smaller Stokes shift requires filters that are very close together and do not include the entire area of the curves, thus reducing efficiency and brightness.
- Photostability: Many chemical processes lead to the degradation of the emission from conventional dyes. Photooxidation is the primary cause of photobleaching. There are two ways to reduce photobleaching: selecting more photostable fluorescent reagents or adding anti-oxidants (in the assay systems). For example, rhodamines are preferred over fluoresceins for photostability reason. In general, microscopic assays require more stringent photostability than microplate or flow cytometry- based assays.

Other more specific effects associated with a specific application will be discussed in the following chapters. These factors include pH effect, environment effect, ion effect, enzyme action, and receptor binding.

## **1.5 Critical factors in designing fluorescence-based assays**

As discussed above, there are many factors that have significant effects on both fluorescence instruments and fluorescent probes. Besides these instrumentation and reagent effects, there are quite a few assay conditions that need to be carefully controlled to give the best assay results.

- Linearity and Dynamic Range: Fluorescence intensity is theoretically proportional (linear) to concentration. There are, however, factors that affect this linear relationship. When concentration is too high, light cannot pass through the sample to cause excitation. Thus very high concentrations can have very low fluorescence intensity (concentration quenching). The linearity of a sample is related to many factors, including the chemical composition of the sample and the path length the light must travel. An unknown sample should always be tested for linearity.
- *Fluorescence Quenching:* The term "quenching" refers to many factors that reduce, or quench fluorescence. Quenching factors are one reason why it is very important to treat standards, blanks and samples in exactly the same manner.

MoBiTec GmbH, Germany ● Phone: +49 551 70722 0 ● Fax: +49 551 70722 22 ● E-Mail: info@mobitec.com ● www.mobitec.com

- Solution Turbidity: Fluorescence measurements are significantly more immune to the effects of turbidity compared to absorption techniques like UV/VIS spectrophotometers. If the interfering substance is reflective, turbidity can create light scattering and readings will increase. If the interfering substance absorbs light, fluorescence will be reduced. If the interfering substance does not absorb light, however, the fluorescence readings will not be affected unless there is so much turbidity that the emitted light cannot penetrate the solvent.
- *pH Effect:* Fluorescence of many compounds is pH-sensitive. We recommend that buffers should be always used in your assays. In certain studies, pH factors can be an advantage. The pH dependence of probe molecules has been greatly used to determine the pH of cells and other biological systems.
- *Photobleaching:* Many fluorescent molecules can be bleached or destroyed by light. Ultraviolet light, especially, can cause certain molecules to break down. Fluorescence readings decrease as the molecules are destroyed. Rate of destruction varies depending upon environmental factors, including temperature.
- *Temperature:* Fluorescence is affected by changes in temperature. As temperature increases, fluorescence decreases. This might be due to an increase of molecular motion with increasing temperature, which results in more molecular collisions and subsequent loss of energy. However, for most fluorescent compounds the magnitude of temperature effect is much smaller than other effects described above.

For labeling probes and research chemicals not included in this brochure, for example, phalloidins or lipophilic stains, please visit our website <u>www.mobitec.com</u> or contact us directly at <u>info@mobitec.com</u>.

## 2. Fluorescence Reference Standards

The fluorescence reference standards listed below are manufactured by AnaSpec, USA. They are carefully chosen and purified, and are guaranteed to give the same correct fluorescence spectra from batch to batch. The AnaStandard Fluorescence Instrument Calibration Kit (catalog # 80605AS) contains a set of stable and water-soluble dyes to cover the full fluorescence spectrum.



Figure 2. Normalized fluorescence spectra of the dyes used in the AnaStandard<sup>™</sup> fluorescence instrument calibration kit

#### Fluorescence reference standards

| Order # | Product                                                                     | Ex/Em (nm)      | Amount |
|---------|-----------------------------------------------------------------------------|-----------------|--------|
| 80040AS | Quinine sulfate Dihydrate *Fluorescence Reference Standard                  | 348/455         | 100 mg |
| 80014AS | Coumarin 152 *Fluorescence Reference Standard*                              | 397/510         | 100 mg |
| 80002AS | 3-Cyano-7-hydroxycoumarin *Fluorescence Reference Standard*                 | 408/450         | 100 mg |
| 80001AS | Fluorescein *Fluorescence Reference Standard*                               | 490/514         | 1 g    |
| 80025AS | Sulfofluorescein *Fluorescence Reference Standard*                          | 495/520         | 100 mg |
| 80023AS | Fluorescein, disodium salt *Fluorescence Reference Standard*                | 500/521         | 100 mg |
| 80015AS | Rhodamine 110 *Fluorescence Reference Standard*                             | 510/535         | 100 mg |
| 80024AS | 2,7-Dichlorofluorescein *Fluorescence Reference Standard*                   | 512/530         | 100 mg |
| 80007AS | Rhodamine 6G *Fluorescence Reference Standard*                              | 530/556         | 100 mg |
| 80005AS | Tetramethylrhodamine *Fluorescence Reference Standard*                      | 540/566         | 100 mg |
| 80030AS | Rhodamine B *Fluorescence Reference Standard*                               | 552/588         | 100 mg |
| 80026AS | Nile Red *Fluorescence Reference Standard*                                  | 552/636         | 25 mg  |
| 80009AS | Sulforhodamine B *Fluorescence Reference Standard*                          | 556/575         | 1 g    |
| 80003AS | Resorufin, sodium salt *Fluorescence Reference Standard*                    | 571/585         | 100 mg |
| 80010AS | Sulforhodamine 101 *Fluorescence Reference Standard*                        | 586/605         | 100 mg |
| 80008AS | Cresyl violet *Fluorescence Reference Standard*                             | 601/632         | 100 mg |
| 80011AS | Nile Blue A *Fluorescence Reference Standard*                               | 633/672         | 100 mg |
| 80028AS | Oxazine 1 *Fluorescence Reference Standard*                                 | 646/670         | 25 mg  |
| 80027AS | Rhodamine 700 *Fluorescence Reference Standard*                             | 647/673         | 25 mg  |
| 80029AS | Rhodamine 800 *Fluorescence Reference Standard*                             | 676/704         | 25 mg  |
| 80605AS | AnaStandard <sup>™</sup> Fluorescence Assay Calibration Kit *Full Spectrum* | 350-650/400-700 | 1 kit  |

## 3. Reactive Fluorescent Dyes

Reactive fluorescent dyes are widely used to modify amino acids, peptides, proteins (in particular, antibodies), oligonucleotides, nucleic acids, carbohydrates, and other biological molecules. Among the reactive dyes, amine-reactive dyes are most often used to prepare various bioconjugates for immunochemistry, histochemistry, fluorescence in situ hybridization (FISH), cell tracing, receptor binding, and other biological applications since amino groups are either abundant or easily introduced into biomolecules. In general, thiol-reactive reagents are frequently used to develop probes for investigating some particular protein structures and functions. Additionally, some amine-containing fluorescent reagents are also used to modify biomolecules, in particular to label glycoproteins. Compared to amino and thiol groups, hydroxyl and carboxyl groups are less frequently used to label biopolymers.

### 3.1 Amine-reactive dyes

A number of fluorescent amine-reactive dyes have been developed to label various biomolecules, and the resultant conjugates are widely used in biological applications. There are four major classes of reactive fluorescent reagents used to label amines: succinimidyl esters (SE), isothiocyanates (ITC), sulfonyl chlorides (SC), and electron-deficient aryl halides. We offer all the popular amine-reactive fluorescent dyes for peptide/protein labelings, nucleotide modifications, and microarray applications.

In general, the preferred bioconjugates should have high fluorescence quantum yields and retain the biological activities of the unlabeled biomolecules. It is quite critical to properly control the degree of substitution (DOS) when conducting a conjugation reaction of biopolymers. A high degree of labeling may significantly decrease the water solubility and binding affinity/specificity of the target biomolecules. Although conjugating dyes to biomolecules is usually easy, preparing the optimal conjugate may require extensive experimentation.

There are four important factors that need to be considered when designing an amine-linked conjugation reaction:

- Solvents: For the most part, reactive dyes and haptens are hydrophobic molecules and should be dissolved in anhydrous dimethylformamide (DMF) or dimethylsulfoxide (DMSO). It has been reported that DMSO reacts with sulfonyl chloride, thus it should not be used with sulfonyl chlorides.
- Reaction pH: The labeling reactions of amines with succinimidyl esters, Isothiocyanates, and other reagents are strongly pH dependent. Amine-reactive reagents react with non-protonated aliphatic amine groups, including the terminal amines of proteins and the ε-amino groups of lysines. Thus,

amine acylation reactions are usually carried out above pH 7.5. On the other hand, the acylation reagents tend to hydrolyze in the presence of water, with the rate increasing as the pH increases.

- Thus, protein conjugations are often run in carbonate buffers with a pH ranging from 7.5 to 10.0. A pH of 8.5-9.5 is usually optimal for modifying lysine residues. In contrast, the α-amino group at a protein's N-terminus can sometimes be selectively modified by reaction at a slightly basic pH. Protein modifications by succinimidyl esters can typically be done at pH 7.5-8.5, whereas isothiocyanates may require a pH 9.0-10.0 for optimal conjugations.
- Reaction Buffers: Buffers that contain free amines such as Tris and glycine must be avoided when using an amine-reactive reagent. Ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation must also be removed before performing dye conjugations. High concentrations of nucleophilic thiol compounds should also be avoided because they may react with the labeling reagent to form unstable intermediates that could destroy the reactive dye.
- *Reaction Temperature:* Most conjugations are done at room temperature. However, either elevated or reduced temperature may be required for a particular labeling reaction.

#### Carboxylic acids and their succinimidyl esters



Succinimidyl esters are proven to be the best reagents for amine modifications because the amide bonds that are formed are essentially identical to, and as stable as peptide bonds. These reagents are generally stable if they are properly stored, and show good reactivity and selectivity with aliphatic amines. They have very low reactivity with aromatic amines, alcohols, phenols (including tyrosine) and histidine. Some succinimidyl esters have poor water solubility, and may not be readily used with a specific application. To overcome this limitation, sulfosuccinimidyl esters (SSE) can generally be prepared *in situ* from the corresponding carboxylic acids simply by dissolving the carboxylic acid dyes in a buffer that contains *N*-hydroxysulfosuccinimide (NHSS) and 1- ethyl-3-(3 dimethylaminopropyl)carbo-diimide (EDC). Addition of NHSS to the buffer has been shown to enhance the yield of carbodiimide-mediated conjugations.7 It was found that some *N*-hydroxysuccinimidyl esters *in situ* for conjugation reactions. The carboxylic acids to the corresponding succinimidyl esters *in situ* for conjugation reactions. The carboxylic acid be useful for preparing acid chlorides and anhydrides, which, unlike succinimidyl esters, can be used to modify aromatic amines and alcohols.



#### **TFP** ester

Tetrafluorophenyl (TFP) esters are an improvement over the succinimidyl ester (SE or NHS-ester) chemistry typically used to attach fluorophores or haptens to the primary amines of biomolecules. Both reactive chemistries produce the same strong amide bond between the dye or hapten and the compound of interest, but TFP esters are less susceptible to spontaneous hydrolysis during conjugation reactions.



Sulfonyl chlorides, including Dansyl chloride, Lissamine<sup>™</sup> rhodamine B sulfonyl chloride, and sulforhodamine 101 sulfonyl chloride (also known as Texas Red<sup>®</sup>) are highly reactive. These reagents are unstable in water, especially at the higher pH required for reaction with aliphatic amines. Protein modifications by sulfonyl chlorides need to be carefully carried out preferably at low temperature. Sulfonyl chlorides can also react with phenols (including tyrosine), aliphatic alcohols (including polysaccharides), thiols (such as cysteine), and imidazoles (such as histidine), but these reactions are not common in proteins or in aqueous solution. Sulfonyl chlorides are unstable in dimethylsulfoxide (DMSO) and should never be used in this solvent.

#### **Isothiocyanates**



Isothiocyanates form thioureas upon reaction with amines. Studies indicated that some thiourea products (in particular, the conjugates from  $\alpha$ -amino acids/peptides/proteins) are much less stable than the conjugates that are prepared from the corresponding succinimidyl esters. It has been reported that antibody conjugates prepared from fluorescein isothiocyanates deteriorate over time. Thus, only a few popular isothiocyanates are offered: 5- and 6-fluorescein isothiocyanates (FITC) that are still widely used for preparing fluorescent antibody conjugates primarily due to their low costs. However, we strongly recommend using 5-FAM, SE, when necessary, for your conjugations whenever possible.

| Order#         | Product                       | Ex/Em (nm) | Amount |
|----------------|-------------------------------|------------|--------|
| 21109AS        | Biotin, SE (Biotin-OSu)       | N/A        | 0.1 g  |
| 60640AS        | Biotin-XX, SE                 | N/A        | 25 mg  |
| 21113AS        | Biotin-LC, SE (Biotin-LC-OSu) | N/A        | 0.1 g  |
| 21110AS        | Biotin, SE (Biotin-OSu)       | N/A        | 0.5 g  |
| 21114AS        | Biotin-LC, SE (Biotin-LC-OSu) | N/A        | 0.5 g  |
| 81228AS        | DNP-X acid, SE                | 350/none   | 25 mg  |
| 81801AS        | Dabcyl acid, SE               | 453/none   | 100 mg |
| 81804AS        | Dabcyl Plus™ acid, SE         | 454/none   | 25 mg  |
| 81826-5AS      | QXL™ 490 acid, SE             | 495/none   | 5 mg   |
| 81836-5AS      | QXL™ 570 acid, SE             | 578/none   | 5 mg   |
| 81816-5AS      | QXL™ 610 acid, SE             | 628/none   | 5 mg   |
| MFP-D660-01-1  | MFP™-DYQ-660-NHS-Ester        | 660/none   | 1 mg   |
| 81841AS        | QXL™ 670 acid, SE             | 668/none   | 5 mg   |
| 81851AS        | QXL™ 680 acid, SE             | 679/none   | 5 mg   |
| 81214AS        | Dansyl-X, SE                  | 333/518    | 25 mg  |
| MFPCCFA-030-1  | MFP-Eterneon™-350/430 NHS     | 350/430    | 1 mg   |
| MFPCCFA-030-5  | MFP-Eterneon™-350/430 NHS     | 350/430    | 5 mg   |
| MFPCCFA-030-10 | MFP-Eterneon™-350/430 NHS     | 350/430    | 10 mg  |
| MFPCCFA-031-1  | MFP-Eterneon™-350/455 NHS     | 350/455    | 1 mg   |
| MFPCCFA-031-5  | MFP-Eterneon™-350/455 NHS     | 350/455    | 5 mg   |
| MFPCCFA-031-10 | MFP-Eterneon™-350/455 NHS     | 350/455    | 10 mg  |
| MFP-D350-06-1  | MFP™-DY-350-TFP-Ester         | 353/432    | 1 mg   |
| MFP-D350-01-1  | MFP™-DY-350-NHS-Ester         | 353/432    | 1 mg   |
| 81208AS        | AMCA-X, SE                    | 353/442    | 10 mg  |
| 81226AS        | DMACA, SE                     | 376/468    | 25 mg  |

|                    | MED_EterneonTM_384/480 NHS                            | 384/480 | 1 ma           |
|--------------------|-------------------------------------------------------|---------|----------------|
|                    |                                                       | 204/400 | Ema            |
|                    |                                                       | 304/400 | 5 mg           |
| MFPCCFA-032-10     | MFP-Eterneon 111-384/480 NHS                          | 384/480 | 10 mg          |
| MFPCCFA-033-1      | MFP-Eterneon™-393/523 NHS                             | 393/523 | 1 mg           |
| MFPCCFA-033-5      | MFP-Eterneon™-393/523 NHS                             | 393/523 | 5 mg           |
| MFPCCFA-033-10     | MFP-Eterneon™-393/523 NHS                             | 393/523 | 10 mg          |
| MFPCCFA-034-1      | MFP-Eterneon™-394/507 NHS                             | 394/507 | 1 ma           |
| MEPCCEA-034-5      | MEP-Eterneon <sup>TM</sup> -394/507 NHS               | 394/507 | 5 mg           |
| MEDCCEA 024 10     | MED Eternoon M 204/507 NHS                            | 204/507 | 10 mg          |
| MFPCCFA-034-10     |                                                       | 394/507 | TO THE         |
| MFP-D405-06-1      | MFP™-DY-405-TFP-Ester                                 | 400/423 | 1 mg           |
| MFP-D405-01-1      | MFP™-DY-405-NHS-Ester                                 | 400/423 | 1 mg           |
| 81216AS            | DACITC                                                | 400/476 | 10 mg          |
| 89317-1AS          | Hil vte Eluor™ 405 acid. SE                           | 404/428 | 1 ma           |
| MEP_D/15-01-1      | MEDTM_DV_/115_NHS_Ester                               | /18//67 | 1 mg           |
| 0404440            | DEAC CE 17 District accuracy in 2 contraction and CE1 | 400/470 | 05 mm          |
| 81211AS            |                                                       | 432/472 | 25 mg          |
| 81213AS            | NBD-X, SE                                             | 466/535 | 25 mg          |
| MFPCCFA-035-1      | MFP-Eterneon™-480/635 NHS                             | 480/635 | 1 mg           |
| MFPCCFA-035-5      | MFP-Eterneon™-480/635 NHS                             | 480/635 | 5 mg           |
| MEPCCEA-035-10     | MFP-Eterneon™-480/635 NHS                             | 480/635 | 10 ma          |
|                    |                                                       | 186/660 | 1 mg           |
| MFP D485XL-01-1    |                                                       | 403/300 | 1 mg           |
| MFP-D490-06-1      | MFP™-DY-490-TFP-ESter                                 | 491/515 | 1 mg           |
| MFP-D490-01-1      | MFP™-DY-490-NHS-Ester                                 | 491/515 | 1 mg           |
| 89000AS            | 5(6)-CFDA, SE                                         | 492/517 | 25 mg          |
| 81007AS            | 5-FAM, SE                                             | 492/518 | 10 ma          |
| 81007-100AS        | 5-FAM SF                                              | 492/518 | 100 mg         |
| 81007-100049       | 5.EAM SE                                              | 102/510 | 1 ~            |
|                    |                                                       | 492/010 | i y            |
| WFP-D495-X5-01-1   |                                                       | 493/521 | 5 mg           |
| 81005AS            | 5-FITC                                                | 494/519 | 100 mg         |
| 81006AS            | 5(6)-FAM, SE                                          | 494/519 | 25 mg          |
| 81006-100AS        | 5(6)-FAM SF                                           | 494/519 | 100 ma         |
| 2015145            | 5-EITC                                                | 494/519 | 1 a            |
| 20131A3            |                                                       | 404/510 | 19             |
| 81006-1000AS       | D(0)-FAM, SE                                          | 494/519 | 1 g            |
| 81010AS            | 6-FITC                                                | 494/520 | 100 mg         |
| 81009AS            | 5-FAM-X, SE                                           | 494/521 | 5 mg           |
| 81008AS            | 6-FAM. SE                                             | 495/517 | 10 ma          |
| 81008-100AS        | 6-FAM SF                                              | 495/517 | 100 mg         |
| 911246             | 5(6) CD110 SE                                         | 400/521 | 5 mg           |
| 01134A3            |                                                       | 490/521 | 5 mg           |
| 81135AS            | 5-CRTIU, SE                                           | 498/521 | 5 mg           |
| 81136AS            | 6-CR110, SE                                           | 498/521 | 5 mg           |
| MFP-D480XL-01-1    | MFP™-DY-480XL-NHS-Ester                               | 500/630 | 1 mg           |
| MFP-A2000          | MFP488-NHS-Ester                                      | 501/523 | 1 ma           |
| 81161-145          | Hil vte Eluor™ 488 acid. SE                           | 502/527 | 1 mg           |
| 01101-140          | Lilyte Fluer M 498 acid, SE                           | 502/527 | Ema            |
| 01101A5            |                                                       | 502/527 | 5 mg           |
| MFP-D505-X5-01-1   | MFP™-DY-505-X5-NHS-ester                              | 505/530 | 5 mg           |
| MFP-D510XL-01-1    | MFP™-DY-510XL-NHS-Ester                               | 509/590 | 1 mg           |
| MFP-D481XL-01-1    | MFP™-DY-481XL-NHS-Ester                               | 515/650 | 1 mg           |
| 81011AS            | 6-IOE SE                                              | 520/548 | 5 ma           |
| MEP_D520XL_01_1    | MEDTM_DV_520XL_NHS_Estor                              | 520/664 | 1 mg           |
| MIT-D320XE-01-1    |                                                       | 520/004 | T mg           |
| 81022AS            | 0-TET, SE                                             | 521/536 | 5 mg           |
| 81104AS            | 5(6)-CR6G, SE                                         | 522/550 | 10 mg          |
| MFP-D521XL-01-1    | MFP™-DY-521XL-NHS-Ester                               | 523/668 | 1 mg           |
| 81106AS            | 6-CR6G, SE                                            | 524/551 | 5 mg           |
| 81105AS            | 5-CR6G. SE                                            | 524/556 | 5 ma           |
| 81020AS            | 6-HFX SF                                              | 533/550 | 5 ma           |
| MEP_D530_01_1      | MEDIM_DV_530_NHS_Exter                                | 520/561 | 1 ma           |
| 1VII F -D-330-01-1 |                                                       | 539/001 | 1 III <u>y</u> |
| 8115UAS            |                                                       | 543/571 | 10 mg          |
| 81151AS            | 5-TRITC, G isomer                                     | 543/571 | 5 mg           |
| 81127AS            | 5(6)-TAMRA-X, SE                                      | 544/572 | 5 mg           |
| 81124AS            | 5(6)-TAMRA, SE                                        | 546/575 | 25 ma          |
| 81124-0145         | 5(6)-TAMBA SE                                         | 546/575 | 100 mg         |
| MEP_D555_01_1      | MEDIM_DV_555_NHS_Extor                                | 547/570 | 1 ma           |
| MI F-D353-01-1     |                                                       | 547/572 | 1 mg           |
| WFP-A2009          | WIFFODD NHO-ESIER                                     | 547/572 | i mg           |
| 81126AS            | 6-TAMRA, SE                                           | 547/573 | 5 mg           |
| 81126-1AS          | 6-TAMRA, SE                                           | 547/573 | 1 g            |
| 81125AS            | 5-TAMRA, SE                                           | 547/574 | 5 ma           |
| 81125-01AS         | 5-TAMRA SE                                            | 547/574 | 100 mg         |
| MEP_D556_01_1      | MEDIM_DV_556_NHS_Exter                                | 5/10/7  | 1 ma           |
|                    |                                                       | 540/5/3 | i iiig         |
| WIFP-D554-01-1     |                                                       | 551/5/2 | i mg           |
| 81251AS            | HiLyte Fluor™ 555 acid, SE                            | 552/569 | 1 mg           |
| MFP-D550-01-1      | MFP™-DY-550-NHS-Ester                                 | 553/578 | 1 mg           |
| MFP-D560-01-1      | MFP™-DY-560-NHS-Ester                                 | 559/578 | 1 ma           |
| MFP-D549P1-06-1    | MEPTM-DY-549P1-TEP-Ester                              | 560/575 | 1 ma           |
| MED D547D1 04 4    |                                                       | 560/575 | 1              |
|                    |                                                       | 00/0/5  | i mg           |
| MFP-D549P1-01-1    | MFP™-DY-549P1-NHS-Ester                               | 560/575 | 1 mg           |
| 81108AS            | LRB-SC (Lissamine Rhodamine B sulfonyl chloride)      | 568/584 | 100 mg         |

|                 |                                        | •              |        |
|-----------------|----------------------------------------|----------------|--------|
| 81114AS         | 5-ROX, SE                              | 573/602        | 5 ma   |
| 81115AS         | 6-BOX SE                               | 575/602        | 5 mg   |
| 81113AS         | 5(6)-BOX_SE                            | 576/601        | 25 mg  |
| MEP_D590_01_1   | MEDTM_DV_500_NHS_Ester                 | 580/599        | 20 mg  |
| MED D501 01 1   | MEDIM DX 501 NHS Ester                 | 500/399        | 1 mg   |
| MFF-D591-01-1   | NIFF                                   | 581/598        | 10 mg  |
| 01130AS         |                                        | 500/001        | 10 mg  |
| 81272-1AS       | HILyte Fluor 11 594 acid, SE           | 593/616        | 1 mg   |
| 812/2-5AS       | HILyte Fluor 594 acid, SE              | 593/616        | 5 mg   |
| MFP-D594-06-1   | MFP <sup>™</sup> -DY-594-TFP-Ester     | 594/615        | 1 mg   |
| MFP-D594-01-1   | MFP™-DY-594-NHS-Ester                  | 594/615        | 1 mg   |
| MFP-A2004       | MFP590 NHS-Ester                       | 597/624        | 1 mg   |
| MFP-D605-01-1   | MFP™-DY-605-NHS-Ester                  | 600/624        | 1 mg   |
| MFP-D610-01-1   | MFP™-DY-610-NHS-Ester                  | 610/630        | 1 mg   |
| MFP-D615-01-1   | MFP™-DY-615-NHS-Ester                  | 621/641        | 1 mg   |
| MFP-D634-06-1   | MFP™-DY-634-TFP-Ester                  | 635/658        | 1 mg   |
| MFP-D634-01-1   | MFP™-DY-634-NHS-Ester                  | 635/658        | 1 mg   |
| MFP-D630-01-1   | MEP™-DY-630-NHS-Ester                  | 636/657        | 1 ma   |
| MEP-D632-01-1   | MEP™-DY-632-NHS-Ester                  | 637/657        | 1 mg   |
| MEP-D633-01-1   | MEP™-DY-633-NHS-Ester                  | 637/657        | 1 mg   |
| MED D631 01 1   | MEDT DV 631 NHS Estor                  | 637/658        | 1 mg   |
|                 | MEDG21 NUS Fotor                       | 627/659        | 1 mg   |
| MFP-A2005       |                                        | 037/030        | 1 mg   |
| MFP-D636-01-1   | MFP11-DY-030-NHS-Ester                 | 645/671        | 1 mg   |
| MFP-D635-01-1   | MFP <sup>IM</sup> -DY-635-NHS-Ester    | 647/671        | 1 mg   |
| 81256AS         | HiLyte Fluor <sup>™</sup> 647 acid, SE | 649/674        | 1 mg   |
| MFP-D647P1-01-1 | MFP™-DY-647P1-NHS-Ester                | 653/672        | 1 mg   |
| MFP-D648P1-01-1 | MFP™-DY-648P1-NHS-Ester                | 653/672        | 1 mg   |
| MFP-D650-01-1   | MFP™-DY-650-NHS-Ester                  | 653/674        | 1 mg   |
| MFP-D654-01-1   | MFP™-DY-654-NHS-Ester                  | 653/677        | 1 mg   |
| MFP-D652-01-1   | MFP™-DY-652-NHS-Ester                  | 654/675        | 1 mg   |
| MFP-D649P1-06-1 | MFP™-DY-649P1-TFP-Ester                | 655/676        | 1 mg   |
| MFP-D649P1-01-1 | MFP™-DY-649P1-NHS-Ester                | 655/676        | 1 ma   |
| MFP-D651-01-1   | MEP™-DY-651-NHS-Ester                  | 656/678        | 1 mg   |
| MFP-D677-01-1   | MEP™-DY-677-NHS-Ester                  | 673/694        | 1 mg   |
| MEP_D678_01_1   | MEDT-DV-678-NHS-Ester                  | 673/694        | 1 mg   |
| MED D675 01 1   |                                        | 674/694        | 1 mg   |
| MFF-D075-01-1   |                                        | 674/699        | 1 mg   |
| MFP-D676-01-1   | MIFP ***-D 1-070-NH3-ESIEI             | 674/699        | 1 mg   |
| 81261AS         | HILYTE Fluor 11 680 acid, SE           | 678/699        | 1 mg   |
| MFP-D679P1-01-1 | MFP <sup>IM</sup> -DY-6/9P1-NHS-Ester  | 679/697        | 1 mg   |
| MFP-D682-06-1   | MFP™-DY-682-TFP-Ester                  | 690/709        | 1 mg   |
| MFP-D680-01-1   | MFP™-DY-680-NHS-Ester                  | 690/709        | 1 mg   |
| MFP-D682-01-1   | MFP™-DY-682-NHS-Ester                  | 690/709        | 1 mg   |
| MFP-D681-01-1   | MFP™-DY-681-NHS-Ester                  | 691/708        | 1 mg   |
| MFP-D703-01-1   | MFP™-DY-703-NHS-Ester                  | 705/721        | 1 mg   |
| MFP-D704-01-1   | MFP™-DY-704-NHS-Ester                  | 706/721        | 1 mg   |
| MFP-D701-01-1   | MFP™-DY-701-NHS-Ester                  | 706/731        | 1 mg   |
| MFP-D700-01-1   | MFP™-DY-700-NHS-Ester                  | 707/730        | 1 ma   |
| MFP-D730-01-1   | MFP™-DY-730-NHS-Ester                  | 732/758        | 1 ma   |
| MFP-D732-01-1   | MFP™-DY-732-NHS-Fster                  | 736/759        | 1 ma   |
| MFP-D734-01-1   | MEP <sup>TM</sup> -DY-734-NHS-Ester    | 736/750        | 1 mg   |
| MFP_D731_01_1   | MEPM_DV_731_NHS_Ester                  | 736/760        | 1 mg   |
| MED D750 01 1   |                                        | 730/700        | 1 mg   |
| MFP-D750-01-1   |                                        | 747/774        | 1 mg   |
| MFP-D754-01-1   | MFP <sup>TM</sup> -DY-754-NHS-Ester    | 748/771        | 1 mg   |
| MFP-D752-01-1   | MFP <sup>IM</sup> -DY-752-NHS-Ester    | 748/772        | 1 mg   |
| MFP-D751-01-1   | MFP <sup>IM</sup> -DY-751-NHS-Ester    | /51///9        | 1 mg   |
| 81266AS         | HiLyte Fluor™ 750 acid, SE             | 754/778        | 1 mg   |
| MFP-D749P1-01-1 | MFP™-DY-749P1-NHS-Ester                | 759/780        | 1 mg   |
| MFP-D778-01-1   | MFP™-DY-778-NHS-Ester                  | 767/787        | 1 mg   |
| MFP-D777-01-1   | MFP™-DY-777-NHS-Ester                  | 770/788        | 1 mg   |
| MFP-D776-06-1   | MFP™-DY-776-TFP-Ester                  | 771/793        | 1 mg   |
| MFP-D776-01-1   | MFP <sup>™</sup> -DY-776-NHS-Ester     | 771/793        | 1 mg   |
| MFP-D800-06-1   | MFP™-DY-800-TFP-Ester                  | 777/791        | 1 ma   |
| MFP-D800-01-1   | MFP™-DY-800-NHS-Ester                  | 777/791        | 1 ma   |
| MFP-D780-01-1   | MFP™-DY-780-NHS-Fster                  | 782/800        | 1 ma   |
| MFP-D781-01-1   | MEP <sup>TM</sup> -DY-781-NHS-Ester    | 783/800        | 1 mg   |
| MEP_D782_01_1   | MEPM_DY_782_NHS_Ester                  | 783/800        | 1 mg   |
| MEP_D831_01_1   | MEPT-DV-831-NHS-Ester                  | <u>814/875</u> | 1 mg   |
|                 |                                        |                | 1 1101 |

### **3.2 Thiol-reactive dyes**

Because free thiol (SH) groups, also called mercapto groups, are not present as abundantly as amino groups in most biopolymers such as proteins and nucleic acids, thiol-reactive reagents often provide a means of selectively modifying a protein at a defined site. Therefore thiol-reactive dyes are often used to prepare fluorescent peptides, proteins and oligonucleotides for probing biological structures, functions and interactions. Thiol-reactive dyes have been used to develop probes for analyzing the topography of proteins in biological membranes, determining distances within the protein or between the proteins and monitoring the changes in protein conformation using environment-sensitive probes.



There are many types of thiol-reactive dyes reported in the literature, including iodoacetamides, disulfides, maleimides, vinyl sulfones and various electron-deficient aryl halides and sulfonates. Iodoacetamides and maleimides are by far the most popular thiol-reactive moieties. Iodoacetamides and maleimides readily react with thiol moieties of biopolymers to form thioether conjugates. The thioether bond formed is quite stable. Additionally, iodoacetamides and maleimides have good selectivity to thiol groups. However, they may also react with histidine or potentially tyrosine under higher pH if free thiols are not readily available. Iodo compounds are known to be very light-sensitive, especially in solution. Thus, we recommend the reactions of iodoacetamides with biomolecules should be carried out under subdued light. The bioconjugation reactions of thiol-reactive probes can be quenched by the addition of cysteine, glutathione, or mercaptosuccinic acid to the reaction mixture, forming highly water-soluble adducts that are easily removed by dialysis or gel filtration.

| Order#           | Product                                      | Ex/Em (nm) | Amount |
|------------------|----------------------------------------------|------------|--------|
| 60643AS          | Biotin C2 maleimide                          | NA/NA      | 25 mg  |
| 60644AS          | N-(Biotinoyl)-N"-(iodoacetyl)ethylenediamine | NA/NA      | 25 mg  |
| 81822AS          | DNP C2 maleimide                             | 350/none   | 25 mg  |
| 81838AS          | QXL™ 570 C2 maleimide                        | 577/none   | 5 mg   |
| MFP-D660-03-2    | MFP™-DYQ-660-maleimide                       | 660/none   | 1 mg   |
| 81854AS          | QXL™ 680 C2 maleimide                        | 679/none   | 1 mg   |
| 81431AS          | EDANS Iodoacetamide                          | 336/490    | 100 mg |
| 81432AS          | EDANS C2 maleimide                           | 336/490    | 25 mg  |
| 81436AS          | N-(1-Pyrene)maleimide                        | 338/375    | 100 mg |
| MFP-D350-03-2    | MFP™-DY-350-maleimide                        | 353/432    | 1 mg   |
| 81402AS          | DACIA                                        | 376/465    | 10 mg  |
| 81403AS          | DACM                                         | 383/463    | 10 mg  |
| 81422AS          | DCIA                                         | 384/470    | 25 mg  |
| MFP-D405-03-2    | MFP™-DY-405-maleimide                        | 400/423    | 1 mg   |
| 89320AS          | HiLyte Fluor™ 405 C2 maleimide               | 404/428    | 1 mg   |
| MFP-D415-03-2    | MFP™-DY-415-maleimide                        | 418/467    | 1 mg   |
| 81407AS          | 6-IAF                                        | 483/517    | 25 mg  |
| MFP-D485XL-03-2  | MFP™-DY-485XL-maleimide                      | 485/560    | 1 mg   |
| MFP-D490-03-2    | MFP™-DY-490-maleimide                        | 491/515    | 1 mg   |
| 81406AS          | 5-IAF                                        | 492/515    | 25 mg  |
| 81405AS          | Fluorescein-5-maleimide                      | 493/515    | 25 mg  |
| MFP-D495-X5-03-2 | MFP™-DY-495-X5-maleimide                     | 493/521    | 5 mg   |
| MFP-D480XL-03-2  | MFP™-DY-480XL-maleimide                      | 500/630    | 1 mg   |
| MFP-A1254        | MFP488-C5-maleimide                          | 501/523    | 1 mg   |
| 81164AS          | HiLyte Fluor™ 488 C2 maleimide               | 502/527    | 1 mg   |
| MFP-D505-X5-03-2 | MFP™-DY-505-X5-maleimide                     | 505/530    | 1 mg   |
| MFP-D510XL-03-2  | MFP™-DY-510XL-maleimide                      | 509/590    | 1 mg   |
| MFP-D481XL-03-2  | MFP™-DY-481XL-maleimide                      | 515/650    | 1 mg   |
| MFP-D520XL-03-2  | MFP™-DY-520XL-maleimide                      | 520/664    | 1 mg   |
| MFP-D521XL-03-2  | MFP™-DY-521XL-maleimide                      | 523/668    | 1 mg   |
| MFP-D530-03-2    | MFP™-DY-530-maleimide                        | 539/561    | 1 mg   |
| 81444AS          | Tetramethylrhodamine-5-(and-6)-maleimide     | 540/567    | 25 mg  |
| 81446AS          | Tetramethylrhodamine-5-maleimide             | 540/567    | 5 mg   |
| 81410AS          | 5-TMRIA                                      | 541/567    | 5 mg   |
| 81445AS          | Tetramethylrhodamine-6-maleimide             | 542/568    | 5 mg   |
| 81441-5AS        | Tetramethylrhodamine-5-(and-6) C2 maleimide  | 544/572    | 5 mg   |
| 81441-25AS       | Tetramethylrhodamine-5-(and-6) C2 maleimide  | 544/572    | 25 mg  |

#### © MoBiTec GmbH, 2016

| 81442AS         | Tetramethylrhodamine-6 C2 maleimide   | 544/572  | 5 mg |
|-----------------|---------------------------------------|----------|------|
| 81443AS         | Tetramethylrhodamine-5 C2 maleimide   | 544/572  | 5 mg |
| MFP-D555-03-2   | MFP™-DY-555-maleimide                 | 547/572  | 1 mg |
| MFP-D554-03-2   | MEP™-DY-554-maleimide                 | 551/572  | 1 ma |
| 81254AS         | Hil vte Eluor™ 555 C2 maleimide       | 552/569  | 1 mg |
| MEP-D550-03-2   | MEP™-DY-550-maleimide                 | 553/578  | 1 mg |
| MEP-D560-03-2   | MFPT-DY-560-maleimide                 | 559/578  | 1 mg |
| MEP-D549P1-03-2 | MFPT-DV-540P1-maleimide               | 560/575  | 1 mg |
| MEP-D590-03-2   | MFPT-DV-590-maleimide                 | 580/599  | 1 mg |
| MED D501 03 2   | MEDIM DX 501 malaimida                | 580/399  | 1 mg |
| 01447AS         | Sulferbedomine 101 C2 meloimide       | 589/601  | 5 mg |
| 01447A3         |                                       | 500/001  | 5 mg |
| 012/040         | MEDIM DV 504 malaimida                | 595/010  | 1 mg |
| MFP-D594-03-2   | MFP <sup>TM</sup> -DY-594-maleimide   | 594/615  | 1 mg |
| MFP-D610-03-2   | MFP <sup>IM</sup> -DY-610-maleimide   | 610/630  | 1 mg |
| MFP-D615-03-2   | MFP <sup>IM</sup> -DY-615-maleimide   | 621/641  | 1 mg |
| MFP-D634-03-2   | MFP <sup>IM</sup> -DY-634-maleimide   | 635/658  | 1 mg |
| MFP-D630-03-2   | MFP <sup>IM</sup> -DY-630-maleimide   | 636/657  | 1 mg |
| MFP-D632-03-2   | MFP <sup>m</sup> -DY-632-maleimide    | 637/657  | 1 mg |
| MFP-D633-03-2   | MFP <sup>IM</sup> -DY-633-maleimide   | 637/657  | 1 mg |
| MFP-D631-03-2   | MFP™-DY-631-maleimide                 | 637/658  | 1 mg |
| MFP-D636-03-2   | MFP™-DY-636-maleimide                 | 645/671  | 1 mg |
| MFP-D635-03-2   | MFP™-DY-635-maleimide                 | 647/671  | 1 mg |
| 81259AS         | HiLyte Fluor™ 647 C2 maleimide        | 649/674  | 1 mg |
| MFP-D647P1-03-2 | MFP™-DY-647P1-maleimide               | 653/672  | 1 mg |
| MFP-D650-03-2   | MFP™-DY-650-maleimide                 | 653/674  | 1 mg |
| MFP-D654-03-2   | MFP™-DY-654-maleimide                 | 653/677  | 1 mg |
| MFP-D652-03-2   | MFP™-DY-652-maleimide                 | 654/675  | 1 mg |
| MFP-D649P1-03-2 | MFP™-DY-649P1-maleimide               | 655/676  | 1 mg |
| MFP-D651-03-2   | MFP™-DY-651-maleimide                 | 656/678  | 1 mg |
| MFP-D677-03-2   | MFP™-DY-677-maleimide                 | 673/694  | 1 mg |
| MFP-D675-03-2   | MFP™-DY-675-maleimide                 | 674/699  | 1 mg |
| MFP-D676-03-2   | MFP™-DY-676-maleimide                 | 674/699  | 1 mg |
| 81264AS         | HiLvte Fluor™ 680 C2 maleimide        | 678/699  | 1 ma |
| MFP-D679P1-03-2 | MFP™-DY-679P1-maleimide               | 679/697  | 1 mg |
| MFP-D680-03-2   | MEP™-DY-680-maleimide                 | 690/709  | 1 mg |
| MFP-D682-03-2   | MFP™-DY-682-maleimide                 | 690/709  | 1 mg |
| MFP-D681-03-2   | MEP™-DY-681-maleimide                 | 691/708  | 1 mg |
| MFP-D704-03-2   | MEP™-DY-704-maleimide                 | 706/721  | 1 mg |
| MFP-D701-03-2   | MEP™-DY-701-maleimide                 | 706/731  | 1 mg |
| MEP-D700-03-2   | MFPT-DY-700-maleimide                 | 707/730  | 1 mg |
| MEP-D730-03-2   | MFPT-DY-730-maleimide                 | 732/758  | 1 mg |
| MFP-D732-03-2   | MFPTM_DV_732_maleimide                | 736/759  | 1 mg |
| MEP-D734-03-2   | MFPTM-DV-731-maleimide                | 736/759  | 1 mg |
| MED D731 03 2   | MEDIM DV 731 malaimida                | 736/759  | 1 mg |
| MED D750 02 2   | MEDIM DX 750 malaimida                | 7,30/700 | 1 mg |
| MED D754 02 2   | MEDIM DX 754 malaimida                | 747771   | 1 mg |
| MED D752 02 2   | MEDIM DV 752 malaimida                | 740/771  | 1 mg |
| MFP-D752-03-2   | MEPT DY-752-maleimide                 | 740/772  | 1 mg |
| MFP-D751-03-2   | MFP <sup>IIII</sup> -DY-751-maleimide | 751/779  | 1 mg |
| 0120945         |                                       | /54///8  | i mg |
| WFP-D/49P1-03-2 |                                       | /59//80  | 1 mg |
| MFP-D778-03-2   |                                       | 76///8/  | 1 mg |
| MFP-D//7-03-2   | MFP <sup>M</sup> -DY-///-maleimide    | 770/788  | 1 mg |
| MFP-D776-03-2   | MFP™-DY-776-maleimide                 | 771/793  | 1 mg |
| MFP-D800-03-2   | MFP™-DY-800-maleimide                 | 777/791  | 1 mg |
| MFP-D780-03-2   | MFP <sup>™</sup> -DY-780-maleimide    | 782/800  | 1 mg |
| MFP-D781-03-2   | MFP™-DY-781-maleimide                 | 783/800  | 1 mg |
| MFP-D782-03-2   | MFP™-DY-782-maleimide                 | 783/800  | 1 mg |
| MFP-D831-03-2   | MFP™-DY-831-maleimide                 | 844/875  | 1 mg |
| MFP-D831-03-2   | MFP™-DY-831-maleimide                 | 844/875  | 1 mg |

### 3.2 Amine-containing dyes and their applications

Amine-containing dyes are widely used to modify water-soluble biopolymers (such as proteins) using water-soluble carbodiimides (such as EDC) to convert the carboxyl groups of the biopolymers into amide groups. Either NHS or NHSS may be used to improve the coupling efficiency of EDC-mediated protein-carboxylic acid conjugations. A large excess of the amine-containing dyes is usually used for EDC-mediated bioconjugations in concentrated protein solutions at low pH to reduce intra- and inter-protein coupling to lysine residues, a common side reaction. These dyes can also be used for modifications of carbohydrates, glycoproteins, and nucleic acids that are first periodate-oxidized to introduce aldehydes and ketones into the biopolymers for subsequent reductive amination. The combination of periodate oxidation with reductive

#### © MoBiTec GmbH, 2016

amination provides an effective way for site-selective modifications of biopolymers. For example, periodate oxidation of the 3'-terminal ribose is reported to be one of the few methods of selectively modifying RNA. Periodate-oxidized ribonucleotides are converted to fluorescent nucleotide probes by reaction with fluorescent hydrazines and amines.



The transglutaminase-catalyzed transamidation of glutamine residues in some proteins and peptides has been recently used for selective modifications of peptides and proteins by amine-containing probes. In the transamidation, the amino group of certain glutamine residues is replaced with an aliphatic amine to form a labeled glutamine amide. This unique method for selective protein modification requires formation of a complex consisting of the glutamine residue, the aliphatic amine probe and the enzyme. Cadaverine (see 3.4) and lysine derivatives perform well in the assays of transglutaminase-catalyzed transamidation. Fluorescent cadaverine- and lysine-labeled dyes were successfully incorporated into peptides/proteins by the transamidation. The characteristic of impermeability of transglutaminase can be explored for selective cell surface labeling. The simultaneous use of a cell-impermeable dye or biotinylated aliphatic amine may further enhance the labeling selectivity. Dansyl cadaverine, the most popular transglutaminase substrate, was reported to selectively label erythrocyte band-3 protein while fluorescein cadaverine is used for labeling proteins of the extracellular matrix.

The amine-containing dyes are also valuable building blocks in bioorganic and medicinal chemistry. Amine-containing dyes were used to custom-synthesize many fluorescently labeled drugs, natural toxins and biological ligands.

| Order#         | Product                                   | Ex/Em (nm) | Amount |
|----------------|-------------------------------------------|------------|--------|
| 81819AS        | Dabcyl C2-aminomodified                   | 428/none   | 100 mg |
| MFP-D660-02    | MFP <sup>™</sup> -DYQ-660-Amino function  | 660/none   | 1 mg   |
| 81842AS        | QXL <sup>™</sup> 670 C2-aminomodified     | 668/none   | 5 mg   |
| MFP-D350-02    | MFP™-DY-350-Amino function                | 353/432    | 1 mg   |
| MFP-D405-02    | MFP™-DY-405-Amino function                | 400/423    | 1 mg   |
| 89318AS        | HiLyte Fluor™ 405-aminomodified, TFA salt | 404/428    | 1 mg   |
| MFP-D415-02    | MFP™-DY-415-Amino function                | 418/467    | 1 mg   |
| MFP-D485XL-02  | MFP™-DY-485XL-Amino function              | 485/560    | 1 mg   |
| MFP-D490-02    | MFP™-DY-490-Amino function                | 491/515    | 1 mg   |
| MFP-D495-X5-02 | MFP™-DY-495-X5-Amino function             | 493/521    | 5 mg   |
| MFP-D480XL-02  | MFP™-DY-480XL-Amino function              | 500/630    | 1 mg   |
| 81162AS        | HiLyte Fluor™ 488-aminomodified, TFA Salt | 503/528    | 1 mg   |
| MFP-D505-X5-02 | MFP™-DY-505-X5-Amino function             | 505/530    | 1 mg   |
| MFP-D510XL-02  | MFP™-DY-510XL-Amino function              | 509/590    | 1 mg   |
| MFP-D481XL-02  | MFP™-DY-481XL-Amino function              | 515/650    | 1 mg   |
| MFP-D520XL-02  | MFP™-DY-520XL-Amino function              | 520/664    | 1 mg   |
| MFP-D521XL-02  | MFP™-DY-521XL-Amino function              | 523/668    | 1 mg   |
| MFP-D555-02    | MFP™-DY-555-Amino function                | 547/572    | 1 mg   |
| MFP-D556-02    | MFP™-DY-556-Amino function                | 548/573    | 1 mg   |
| 81252AS        | HiLyte Fluor™ 555-aminomodified           | 551/567    | 1 mg   |
| MFP-D550-02    | MFP™-DY-550-Amino function                | 553/578    | 1 mg   |
| MFP-D547P1-02  | MFP™-DY-547P1-Amino function              | 560/575    | 1 mg   |
| MFP-D549P1-02  | MFP™-DY-549P1-Amino function              | 560/575    | 1 mg   |
| MFP-D590-02    | MFP™-DY-590-Amino function                | 580/599    | 1 mg   |
| 81273AS        | HiLyte Fluor™ 594-aminomodified, TFA salt | 593/616    | 1 mg   |
| MFP-D594-02    | MFP™-DY-594-Amino function                | 594/615    | 1 mg   |
| MFP-D605-02    | MFP™-DY-605-Amino function                | 600/624    | 1 mg   |
| MFP-D610-02    | MFP™-DY-610-Amino function                | 610/630    | 1 mg   |
| MFP-D615-02    | MFP™-DY-615-Amino function                | 621/641    | 1 mg   |
| MFP-D634-02    | MFP <sup>™</sup> -DY-634-Amino function   | 635/658    | 1 mg   |
| MFP-D630-02    | MFP™-DY-630-Amino function                | 636/657    | 1 mg   |

| MEP-D632-02   | MEP™-DY-632-Amino function               | 637/657 | 1 ma |
|---------------|------------------------------------------|---------|------|
| MFP-D633-02   | MEP™-DY-632-Amino function               | 637/657 | 1 mg |
| MFP-D631-02   | MEP™-DY-631-Amino function               | 637/658 | 1 mg |
| MFP_D636_02   | MEDTM-DV-636-Amino function              | 645/671 | 1 mg |
| MED D635 02   | MEDIM DV 635 Amino function              | 647/671 | 1 mg |
| 81257AS       | Hil vto EluorIM 647 aminomodified        | 640/674 | 1 mg |
| MED D650 02   | MEDIM DV 650 Amino function              | 652/674 | 1 mg |
| MED D654 02   | MEDIM DV 654 Amino function              | 652/677 | 1 mg |
| MED D640D1 02 | MEDIM DV 640D1 Amino function            | 053/077 | 1 mg |
| MFP-D049F1-02 | MEDTM DV 651 Aming function              | 055/070 | 1 mg |
| MFP-D031-02   | MEP IIII-DI -051-Amino function          | 050/070 | 1 mg |
| MFP-D678-02   | MFP IIII-DY-678-Amino function           | 674/694 | 1 mg |
| MFP-D675-02   | MFP IM-DY-6/5-Amino function             | 674/699 | 1 mg |
| MFP-D676-02   | MFP <sup>IM</sup> -DY-6/6-Amino function | 674/699 | 1 mg |
| 81262AS       | HiLyte Fluor™ 680-aminomodified          | 678/699 | 1 mg |
| MFP-D679P1-02 | MFP™-DY-679P1-Amino function             | 679/697 | 1 mg |
| MFP-D680-02   | MFP™-DY-680-Amino function               | 690/709 | 1 mg |
| MFP-D682-02   | MFP™-DY-682-Amino function               | 690/709 | 1 mg |
| MFP-D681-02   | MFP™-DY-681-Amino function               | 691/708 | 1 mg |
| MFP-D703-02   | MFP™-DY-703-Amino function               | 705/721 | 1 mg |
| MFP-D701-02   | MFP <sup>™</sup> -DY-701-Amino function  | 706/731 | 1 mg |
| MFP-D700-02   | MFP <sup>™</sup> -DY-700-Amino function  | 707/730 | 1 mg |
| MFP-D730-02   | MFP™-DY-730-Amino function               | 732/758 | 1 mg |
| MFP-D732-02   | MFP™-DY-732-Amino function               | 736/759 | 1 mg |
| MFP-D734-02   | MFP™-DY-734-Amino function               | 736/759 | 1 mg |
| MFP-D731-02   | MFP™-DY-731-Amino function               | 736/760 | 1 mg |
| MFP-D750-02   | MFP™-DY-750-Amino function               | 747/776 | 1 mg |
| MFP-D754-02   | MFP™-DY-754-Amino function               | 748/771 | 1 mg |
| MFP-D752-02   | MFP™-DY-752-Amino function               | 748/772 | 1 mg |
| MFP-D751-02   | MFP™-DY-751-Amino function               | 751/779 | 1 mg |
| 81267AS       | HiLvte Fluor™ 750-aminomodified          | 754/778 | 1 ma |
| MFP-D777-02   | MFP™-DY-777-Amino function               | 770/788 | 1 mg |
| MFP-D776-02   | MFP™-DY-776-Amino function               | 771/793 | 1 mg |
| MFP-D800-02   | MFP™-DY-800-Amino function               | 777/791 | 1 ma |
| MFP-D780-02   | MEP™-DY-780-Amino function               | 782/800 | 1 ma |
| MFP-D781-02   | MFP™-DY-781-Amino function               | 783/800 | 1 ma |
| MFP-D782-02   | MFP™-DY-782-Amino function               | 783/800 | 1 ma |
| MFP-D831-02   | MEP™-DY-831-Amino function               | 844/875 | 1 ma |
|               |                                          | 011/010 | g    |

### **3.3 Cadaverines**

As already discussed in 3.2, cadaverines can be used as fluorescent transglutaminase substrates to label proteins by transamidation. For example, TAMRA (carboxytetramethylrhodamine) is one of the most popular fluorophores used in various bioconjugations. TAMRA is a bright orange fluorophore. 5(6)-TAMRA is the mixture of two TAMRA isomers. 5-TAMRA cadaverine and 6-TAMRA cadaverine are the purified single isomers of 5(6)-TAMRA cadaverine mixture. They are preferred for some complicated biological applications where reproducibility is more critical than material cost since the minor positional difference between 5-isomer and 6-isomer might have biological implications.



| Order#  | Product                                          | Ex/Em (nm) | Amount |
|---------|--------------------------------------------------|------------|--------|
| 60648AS | Biotin cadaverine (N-(5-Aminopentyl)biotinamide) | N/A        | 25 mg  |
| 81501AS | Dansyl cadaverine                                | 333/518    | 25 mg  |
| 81502AS | 5-FAM cadaverine                                 | 494/521    | 10 mg  |
| 81504AS | 5-FITC cadaverine                                | 492/516    | 5 mg   |
| 81506AS | 5(6)-TAMRA cadaverine                            | 544/570    | 10 mg  |
| 81507AS | 5-TAMRA cadaverine                               | 545/576    | 5 mg   |
| 81508AS | 6-TAMRA cadaverine                               | 544/575    | 5 mg   |
| 81510AS | Sulforhodamine 101 cadaverine                    | 583/601    | 5 mg   |

### 3.4 Carbonyl-reactive hydrazides

Fluorescent hydrazides are carbonyl-reactive fluorescent labeling dyes. They can be used for labeling glycoproteins such as HRP. Although certain aromatic amines such as 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) and 8-aminopyrene-1,3,6-trisulfonic acid (APTS) have been extensively utilized to modify reducing sugars for analysis and sequencing, the most reactive reagents for forming stable conjugates of aldehydes and ketones are usually hydrazine derivatives, including hydrazides, semicarbazides and carbohydrazides (**Figure 3.**), as well as hydroxylamine derivatives. Hydrazine derivatives react with ketones to yield relatively stable hydrazones (**Figure 4.**), and with aldehydes to yield hydrazones that are somewhat less stable, though they may be formed faster. In addition, hydrazides are low molecular weight, cell membrane-impermeant, aldehyde-fixable molecules that can be used as a cell tracer, e.g., by loading into cells by microinjection, infusion from patch pipette, or uptake induced by pinocytic cell-loading reagents.



Figure 3. Structures of A) a hydrazide, B) a semicarbazide, and C) a carbohydrazide



Figure 4. Modifying aldehydes and ketones with hydrazine derivatives

| Order#        | Product                               | Ex/Em (nm) | Amount |
|---------------|---------------------------------------|------------|--------|
| 60647AS       | Biocytin hydrazide                    | N/A        | 25 mg  |
| 81848AS       | QXL <sup>™</sup> 570 hydrazide        | 577/none   | 5 mg   |
| 81520AS       | Dansyl hydrazide                      | 333/518    | 100 mg |
| 81237AS       | 1-Pyrenebutanoic acid, hydrazide      | 341/376    | 100 mg |
| 89319AS       | HiLyte Fluor™ 405 hydrazide           | 404/428    | 1 mg   |
| MFP-A1436     | MFP488-hydrazide                      | 501/523    | 1 mg   |
| 81163AS       | HiLyte Fluor™ 488 hydrazide           | 502/527    | 1 mg   |
| 81253AS       | HiLyte Fluor™ 555 hydrazide           | 552/569    | 1 mg   |
| 81274AS       | HiLyte Fluor™ 594 hydrazide, TFA Salt | 593/616    | 1 mg   |
| MFP-D594-04   | MFP™-DY-594-hydrazide                 | 594/615    | 1 mg   |
| MFP-D634-04   | MFP™-DY-634-hydrazide                 | 635/658    | 1 mg   |
| MFP-D631-04   | MFP™-DY-631-hydrazide                 | 637/658    | 1 mg   |
| 81258AS       | HiLyte Fluor™ 647 hydrazide           | 649/674    | 1 mg   |
| MFP-D647P1-04 | MFP™-DY-647P1-Hydrazide               | 653/672    | 1 mg   |
| 81263AS       | HiLyte Fluor™ 680 hydrazide           | 678/699    | 1 mg   |
| MFP-D682-04   | MFP™-DY-682-hydrazide                 | 690/709    | 1 mg   |
| MFP-D681-04   | MFP™-DY-681-hydrazide                 | 691/708    | 1 mg   |
| MFP-D730-04   | MFP™-DY-730-hydrazide                 | 732/758    | 1 mg   |
| 81268AS       | HiLyte Fluor™ 750 hydrazide           | 754/778    | 1 mg   |
| MFP-D782-04   | MFP™-DY-782-hydrazide                 | 783/800    | 1 mg   |

## 3.5 Carboxylic acids

| Order#          | Product                       | Ex/Em (nm) | Amount |
|-----------------|-------------------------------|------------|--------|
| MFP-D660-00-1   | MFP™-DYQ-660-Carboxylic Acid  | 660/none   | 1 mg   |
| MFP-D485XL-00-1 | MFP™-DY-485XL-Carboxylic Acid | 485/560    | 1 mg   |
| MFP-D490-00-1   | MFP™-DY-490-Carboxylic Acid   | 491/515    | 1 mg   |
| MFP-D480XL-00-1 | MFP™-DY-480XL-Carboxylic Acid | 500/630    | 1 mg   |
| MFP-D481XL-00-1 | MFP™-DY-481XL-Carboxylic Acid | 515/650    | 1 mg   |

MoBiTec GmbH, Germany ● Phone: +49 551 70722 0 ● Fax: +49 551 70722 22 ● E-Mail: info@mobitec.com ● www.mobitec.com

| MFP-D520XL-00-1 | MFP™-DY-520XL-Carboxylic Acid               | 520/664  | 1 mg |
|-----------------|---------------------------------------------|----------|------|
| MFP-D521XL-00-1 | MFP™-DY-521XL-Carboxylic Acid               | 523/668  | 1 mg |
| MFP-D530-00-1   | MFP™-DY-530-Carboxylic Acid                 | 539/561  | 1 mg |
| MFP-D555-00-1   | MFP™-DY-555-Carboxylic Acid                 | 547/572  | 1 mg |
| MFP-D556-00-1   | MFP™-DY-556-Carboxylic Acid                 | 548/573  | 1 mg |
| MFP-D554-00-1   | MFP™-DY-554-Carboxylic Acid                 | 551/572  | 1 mg |
| MFP-D550-00-1   | MFP™-DY-550-Carboxylic Acid                 | 553/578  | 1 mg |
| MFP-D560-00-1   | MFP™-DY-560-Carboxylic Acid                 | 559/578  | 1 mg |
| MFP-D590-00-1   | MFP™-DY-590-Carboxylic Acid                 | 580/599  | 1 mg |
| MFP-D591-00-1   | MFP™-DY-591-Carboxylic Acid                 | 581/598  | 1 mg |
| MFP-D594-00-1   | MFP™-DY-594-Carboxylic Acid                 | 594/615  | 1 mg |
| MFP-D605-00-1   | MFP™-DY-605-Carboxylic Acid                 | 600/624  | 1 mg |
| MFP-D610-00-1   | MFP™-DY-610-Carboxylic Acid                 | 610/630  | 1 mg |
| MFP-D615-00-1   | MFP™-DY-615-Carboxylic Acid                 | 621/641  | 1 mg |
| MFP-D634-00-1   | MFP™-DY-634-Carboxylic Acid                 | 635/658  | 1 mg |
| MFP-D630-00-1   | MFP™-DY-630-Carboxylic Acid                 | 636/657  | 1 mg |
| MFP-D632-00-1   | MFP™-DY-632-Carboxylic Acid                 | 637/657  | 1 mg |
| MFP-D633-00-1   | MFP™-DY-633-Carboxvlic Acid                 | 637/657  | 1 mg |
| MFP-D631-00-1   | MFP™-DY-631-Carboxvlic Acid                 | 637/658  | 1 ma |
| MFP-D636-00-1   | MFP™-DY-636-Carboxylic Acid                 | 645/671  | 1 mg |
| MFP-D635-00-1   | MEP™-DY-635-Carboxylic Acid                 | 647/671  | 1 mg |
| MFP-D647P1-00-1 | MEP™-DY-647P1-Carboxylic Acid               | 653/672  | 1 mg |
| MFP-D648P1-00-1 | MEP™-DY-648P1-Carboxylic Acid               | 653/672  | 1 mg |
| MEP-D650-00-1   | MEPT-DY-650-Carboxylic Acid                 | 653/674  | 1 mg |
| MEP-D654-00-1   | MEPT-DY-654-Carboxylic Acid                 | 653/677  | 1 mg |
| MEP-D652-00-1   | MEPT-DY-652-Carboxylic Acid                 | 654/675  | 1 mg |
| MEP-D649P1-00-1 | MEPTM-DY-649P1-Carboxylic Acid              | 655/676  | 1 mg |
| MEP-D651-00-1   | MEPTM-DY-651-Carboxylic Acid                | 656/678  | 1 mg |
| MFP-D678-00-1   | MEPTM-DV-678-Carboxylic Acid                | 674/694  | 1 mg |
| MEP_D677-00-1   | MEDIM-DV-677-Carboxylic Acid                | 674/694  | 1 mg |
| MFP-D675-00-1   | MEPTM-DV-675-Carboxylic Acid                | 674/699  | 1 mg |
| MEP_D676-00-1   | MEDIM-DV-676-Carboxylic Acid                | 674/699  | 1 mg |
| MER D670P1 00 1 | MEPTM DX 670P1 Carboxylic Acid              | 679/693  | 1 mg |
| MER D680 00 1   | MEDIM DX 680 Carboxylic Acid                | 600/700  | 1 mg |
| MEP D682 00 1   | MEPTM DV 682 Carboxylic Acid                | 690/709  | 1 mg |
| MED D681 00 1   | MEDIM DX 681 Carboxylic Acid                | 601/709  | 1 mg |
| MED D702 00 1   | MEDIM DV 702 Corboxylic Acid                | 705/721  | 1 mg |
| MEP D703-00-1   |                                             | 705/721  | 1 mg |
| MEP D704-00-1   | MEDIM DV 701 Carboxylic Acid                | 700/721  | 1 mg |
| MFP-D701-00-1   |                                             | 700/731  | 1 mg |
| MFP-D700-00-1   | MEPT DY 720 Carboxylic Acid                 | 707/730  | 1 mg |
| MFP-D730-00-1   |                                             | 1 32/130 | 1 mg |
| MFP-D732-00-1   |                                             | 730/759  | 1 mg |
| MFP-D734-00-1   | MFP 11 - 1 34-Carboxylic Acid               | 736/759  | 1 mg |
| MFP-D731-00-1   | MFP M-DY-731-Carboxylic Acid                | / 36//60 | 1 mg |
| MFP-D750-00-1   | MFP <sup>IM</sup> -DY-750-Carboxylic Acid   | /4///6   | 1 mg |
| MFP-D754-00-1   | MFP M-DY-754-Carboxylic Acid                | 748/771  | 1 mg |
| MFP-D752-00-1   | MFP <sup>IM</sup> -DY-752-Carboxylic Acid   | 748/772  | 1 mg |
| MFP-D751-00-1   | MFP <sup>IIII</sup> -DY-751-Carboxylic Acid | 751/7/9  | 1 mg |
| MFP-D/49P1-00-1 | MEPT DY-749P1-Carboxylic Acid               | /59//80  | 1 mg |
| MFP-D778-00-1   | MFPM-DY-//8-Carboxylic Acid                 | 767/787  | 1 mg |
| MFP-D777-00-1   | MFP M-DY-///-Carboxylic Acid                | 770/788  | 1 mg |
| MFP-D776-00-1   | MFP <sup>III</sup> -DY-776-Carboxylic Acid  | 771/793  | 1 mg |
| MFP-D800-00-1   | MFP™-DY-800-Carboxylic Acid                 | 777/791  | 1 mg |
| MFP-D780-00-1   | MFP <sup>IIII</sup> -DY-780-Carboxylic Acid | 782/800  | 1 mg |
| MFP-D781-00-1   | MFP <sup>™</sup> -DY-781-Carboxylic Acid    | 783/800  | 1 mg |
| MFP-D782-00-1   | MFP™-DY-782-Carboxylic Acid                 | 783/800  | 1 mg |
| MFP-D831-00-1   | MFP™-DY-831-Carboxylic Acid                 | 844/875  | 1 mg |

## 3.6 Free acids

| Order#           | Product                   | Ex/Em (nm) | Amount |
|------------------|---------------------------|------------|--------|
| MFP-D350-00-1    | MFP™-DY-350, free acid    | 353/432    | 1 mg   |
| MFP-D405-00-1    | MFP™-DY-405, free acid    | 400/423    | 1 mg   |
| MFP-D415-00-1    | MFP™-DY-415, free acid    | 418/467    | 1 mg   |
| MFP-D430-00-1    | MFP™-DY-430, free acid    | 491/515    | 1 mg   |
| MFP-D495-X5-00-1 | MFP™-DY-495-X5, free acid | 493/521    | 10 mg  |
| MFP-D505-X5-00-1 | MFP™-DY-505-X5, free acid | 505/530    | 5 mg   |
| MFP-D547P1-00-1  | MFP™-DY-547P1, free acid  | 560/575    | 1 mg   |
| MFP-D549P1-00-1  | MFP™-DY-549P1, free acid  | 560/575    | 1 mg   |
| MFP-D510XL-00-1  | MFP™-DY-510XL, free acid  | 509/590    | 1 mg   |

# 4. Biotins & Avidins/Streptavidins

The avidin/streptavidin-biotin interaction is the strongest known non-covalent biological interaction  $(K_d = 10^{-15} \text{ M}^{-1})$  between a protein and its ligand. The bond formation between biotin and avidin/streptavidin is very rapid and, once formed, is unaffected by pH, organic solvents, and other denaturing agents. The avidin-biotin complex can even withstand 3 M guanidine. Both avidin and streptavidin have essentially irreversible biotin-binding properties since bound biotin can only be released by denaturing the subunits of the proteins. The tight and specific binding of biotin and its derivatives to various avidins has been extensively explored for a number of biological applications.

#### **Biotins**

| Order#           | Product                                  | Ex/Em (nm) | Amount |
|------------------|------------------------------------------|------------|--------|
| MFP-D660-30-1    | MFP™-DYQ-660-Biotin                      | 660/none   | 1 mg   |
| MFP-D350-30-1    | MFP™-DY-350-Biotin                       | 353/432    | 1 mg   |
| MFP-D405-30-1    | MFP™-DY-405-Biotin                       | 400/423    | 1 mg   |
| MFP-D415-30-1    | MFP™-DY-415-Biotin                       | 418/467    | 1 mg   |
| MFP-D485XL-30-1  | MFP™-DY-485XL-Biotin                     | 485/560    | 1 mg   |
| MFP-D490-30-1    | MFP™-DY-490-Biotin                       | 491/515    | 1 mg   |
| 60656AS          | Fluorescein biotin                       | 494/518    | 5 mg   |
| 60654AS          | Biotin-4-fluorescein                     | 494/523    | 10 mg  |
| MFP-D480XL-30-1  | MFP™-DY-480XL-Biotin                     | 500/630    | 1 mg   |
| MFP-D505-X5-30-1 | MFP™-DY-505-X5-Biotin                    | 505/530    | 500 µg |
| MFP-D481XL-30-1  | MFP™-DY-481XL-Biotin                     | 515/650    | 1 mg   |
| MFP-D520XL-30-1  | MFP™-DY-520XL-Biotin                     | 520/664    | 1 mg   |
| MFP-D521XL-30-1  | MFP™-DY-521XL-Biotin                     | 523/668    | 1 mg   |
| MFP-D530-30-1    | MFP™-DY-530-Biotin                       | 539/561    | 1 mg   |
| MFP-D555-30-1    | MFP™-DY-555-Biotin                       | 547/572    | 1 mg   |
| MFP-D554-30-1    | MFP™-DY-554-Biotin                       | 551/572    | 1 mg   |
| MFP-D550-30-1    | MFP™-DY-550-Biotin                       | 553/578    | 1 mg   |
| MFP-D591-30-1    | MFP™-DY-591-Biotin                       | 581/598    | 1 mg   |
| MFP-D610-30-1    | MFP™-DY-610-Biotin                       | 610/630    | 1 mg   |
| MFP-D615-30-1    | MFP™-DY-615-Biotin                       | 621/641    | 1 mg   |
| MFP-D634-30-1    | MFP™-DY-634-Biotin                       | 635/658    | 500 µg |
| MFP-D630-30-1    | MFP™-DY-630-Biotin                       | 636/657    | 1 mg   |
| MFP-D632-30-1    | MFP™-DY-632-Biotin                       | 637/657    | 1 mg   |
| MFP-D633-30-1    | MFP™-DY-633-Biotin                       | 637/657    | 1 mg   |
| MFP-D631-30-1    | MFP™-DY-631-Biotin                       | 637/658    | 1 mg   |
| MFP-D636-30-1    | MFP™-DY-636-Biotin                       | 645/671    | 1 mg   |
| MFP-D635-30-1    | MFP™-DY-635-Biotin                       | 647/671    | 1 mg   |
| MFP-D650-30-1    | MFP™-DY-650-Biotin                       | 653/674    | 1 mg   |
| MFP-D652-30-1    | MFP™-DY-652-Biotin                       | 654/675    | 1 mg   |
| MFP-D649P1-30-1  | MFP™-DY-649P1-Biotin                     | 655/676    | 1 mg   |
| MFP-D651-30-1    | MFP™-DY-651-Biotin                       | 656/678    | 1 mg   |
| MFP-D676-30-1    | MFP™-DY-676-Biotin                       | 674/699    | 1 mg   |
| MFP-D682-30-1    | MFP™-DY-682-Biotin                       | 690/709    | 1 mg   |
| MFP-D681-30-1    | MFP™-DY-681-Biotin                       | 691/708    | 1 mg   |
| MFP-D704-30-1    | MFP™-DY-704-Biotin                       | 706/721    | 1 mg   |
| MFP-D701-30-1    | MFP™-DY-701-Biotin                       | 706/731    | 1 mg   |
| MFP-D730-30-1    | MFP™-DY-730-Biotin                       | 732/758    | 1 mg   |
| MFP-D732-30-1    | MFP™-DY-732-Biotin                       | 736/759    | 1 mg   |
| MFP-D734-30-1    | MFP™-DY-734-Biotin                       | 736/759    | 1 mg   |
| MFP-D731-30-1    | MFP™-DY-731-Biotin                       | 736/760    | 1 mg   |
| MFP-D750-30-1    | MFP™-DY-750-Biotin                       | 747/776    | 1 mg   |
| MFP-D754-30-1    | MFP™-DY-754-Biotin                       | 748/771    | 1 mg   |
| MFP-D752-30-1    | MFP™-DY-752-Biotin                       | 748/772    | 1 mg   |
| MFP-D751-30-1    | MFP™-DY-751-Biotin                       | 751/779    | 1 mg   |
| MFP-D800-30-1    | MFP™-DY-800-Biotin                       | 777/791    | 1 mg   |
| MFP-D780-30-1    | MFP™-DY-780-Biotin                       | 782/800    | 1 mg   |
| MFP-D781-30-1    | MFP™-DY-781-Biotin                       | 783/800    | 1 mg   |
| 72162AS          | AnaPrep <sup>™</sup> Biotin Blocking Kit | N/A        | 1 kit  |

#### Avidins/streptavidins

| Order#       | Product                                    | Ex/Em (nm) | Amount |
|--------------|--------------------------------------------|------------|--------|
| 60672-H405AS | Streptavidin, HiLyte Fluor™ 405 labeled    | 404/428    | 1 mg   |
| 60659-FITCAS | Streptavidin, FITC conjugated              | 490/520    | 1 mg   |
| 60664AS      | Streptavidin, 5-FAM conjugated             | 492/519    | 1 mg   |
| 60665AS      | Streptavidin, HiLyte Fluor™ 488 conjugated | 495/524    | 1 mg   |

| 72003-20AS    | HiLyte Fluor™ Labeled Streptavidin Sampler Kit (3 each; | 499/523;553/ | 1 kit  |
|---------------|---------------------------------------------------------|--------------|--------|
|               | 8-80 samples in size of 10 x 10 mm)                     | 568;653/673  |        |
| 72003-200AS   | HiLyte Fluor™ Labeled Streptavidin Sampler Kit (3 each; | 499/523;553/ | 1 kit  |
| 12000 2001 10 | 80-800 samples in size of 10 x 10 mm)                   | 568;653/673  | 1 IAC  |
| MFP-S1223     | MFP488-streptavidin                                     | 501/523      | 1 mg   |
| 60670AS       | Streptavidin, 5-TAMRA conjugated                        | 541/568      | 1 mg   |
| 60662AS       | Streptavidin, B-phycoerythrin conjugated                | 545/575      | 0.5 mg |
| 60666AS       | Streptavidin, HiLyte Fluor™ 555 conjugated              | 555/565      | 1 mg   |
| 60669AS       | Streptavidin, R-phycoerythrin conjugated                | 565/575      | 0.5 mg |
| 60672-H594AS  | Streptavidin, HiLyte Fluor™ 594 conjugated              | 596/617      | 1 mg   |
| 60667AS       | Streptavidin, HiLyte Fluor™ 647 conjugated              | 650/668      | 1 mg   |
| 60659-H680AS  | Streptavidin, HiLyte Fluor™ 680 conjugated              | 678/699      | 1 mg   |
| 60659-H750AS  | Streptavidin, HiLyte Fluor™ 750 conjugated              | 754/778      | 1 mg   |
| 60659AS       | Streptavidin                                            | N/A          | 5 mg   |
| PRO-283-2PS   | Streptavidin                                            | N/A          | 10 mg  |
| PRO-283-3PS   | Streptavidin                                            | N/A          | 100 mg |
| 60659-100AS   | Streptavidin                                            | N/A          | 100 mg |
| 60659-500AS   | Streptavidin                                            | N/A          | 500 mg |
| 60659-1000AS  | Streptavidin                                            | N/A          | 1 g    |
| P3070-2-UBP   | Streptavidin XPure Agarose Resin                        | N/A          | 2 ml   |
| P3070-5-UBP   | Streptavidin XPure Agarose Resin                        | N/A          | 5 ml   |
| 60660AS       | Streptavidin, alkaline phosphatase conjugated           | N/A          | 0.5 mg |
| 60663AS       | Streptavidin, crosslinked allophycocyanin conjugated    | N/A          | 0.2 mg |
| 60668AS       | Streptavidin, HRP conjugated                            | N/A          | 1 mg   |
| 72177-5AS     | Streptavidin, recombinant                               | N/A          | 5 mg   |
| 72177-100AS   | Streptavidin, recombinant                               | N/A          | 100 mg |
| 72177-500AS   | Streptavidin, recombinant                               | N/A          | 500 mg |

# 5. Phalloidins

Phalloidin is a bicyclic peptide belonging to a family of toxins isolated from a deadly poisonous *Amanita phalloides* mushroom, the trivial name is death cap, and is commonly used in imaging applications to selectively label F-actin. Fluorescently-labeled phalloidin has several advantages over antibodies for actin labeling, including virtually identical binding properties with actin from different species of plants and animals, and high selectivity.

| Order#        | Product                  | Ex/Em (nm) | Amount    |
|---------------|--------------------------|------------|-----------|
| MFP-D350-33   | MFP™-DY-350-Phalloidin   | 353/432    | 300 Units |
| MFP-D405-33   | MFP™-DY-405-Phalloidin   | 400/423    | 300 Units |
| MFP-D415-33   | MFP™-DY-415-Phalloidin   | 418/467    | 300 Units |
| MFP-D485XL-33 | MFP™-DY-485XL-Phalloidin | 485/560    | 300 Units |
| MFP-D490-33   | MFP™-DY-490-Phalloidin   | 491/515    | 300 Units |
| MFP-D495-33   | MFP™-DY-495-Phalloidin   | 493/521    | 300 Units |
| MFP-D480XL-33 | MFP™-DY-480XL-Phalloidin | 500/630    | 300 Units |
| MFP-D481XL-33 | MFP™-DY-481XL-Phalloidin | 515/650    | 300 Units |
| MFP-D520XL-33 | MFP™-DY-520XL-Phalloidin | 520/664    | 300 Units |
| MFP-D521XL-33 | MFP™-DY-521XL-Phalloidin | 523/668    | 300 Units |
| MFP-D555-33   | MFP™-DY-555-Phalloidin   | 547/572    | 300 Units |
| MFP-D556-33   | MFP™-DY-556-Phalloidin   | 548/573    | 300 Units |
| MFP-D554-33   | MFP™-DY-554-Phalloidin   | 551/572    | 300 Units |
| MFP-D547P1-33 | MFP™-DY-547P1-Phalloidin | 560/575    | 300 Units |
| MFP-D549P1-33 | MFP™-DY-549P1-Phalloidin | 560/575    | 300 Units |
| MFP-D590-33   | MFP™-DY-590-Phalloidin   | 580/599    | 300 Units |
| MFP-D591-33   | MFP™-DY-591-Phalloidin   | 581/598    | 300 Units |
| MFP-D594-33   | MFP™-DY-594-Phalloidin   | 594/615    | 300 Units |
| MFP-D605-33   | MFP™-DY-605-Phalloidin   | 600/624    | 300 Units |
| MFP-D634-33   | MFP™-DY-634-Phalloidin   | 635/658    | 300 Units |
| MFP-D632-33   | MFP™-DY-632-Phalloidin   | 637/657    | 300 Units |
| MFP-D633-33   | MFP™-DY-633-Phalloidin   | 637/657    | 300 Units |
| MFP-D631-33   | MFP™-DY-631-Phalloidin   | 637/658    | 300 Units |
| MFP-D636-33   | MFP™-DY-636-Phalloidin   | 645/671    | 300 Units |
| MFP-D635-33   | MFP™-DY-635-Phalloidin   | 647/671    | 300 Units |
| MFP-D647P1-33 | MFP™-DY-647P1-Phalloidin | 653/672    | 300 Units |
| MFP-D654-33   | MFP™-DY-654-Phalloidin   | 653/677    | 1 mg      |
| MFP-D649P1-33 | MFP™-DY-649P1-Phalloidin | 655/676    | 300 Units |
| MFP-D651-33   | MFP™-DY-651-Phalloidin   | 656/678    | 300 Units |
| MFP-D682-33   | MFP™-DY-682-Phalloidin   | 690/709    | 300 Units |

Incorporating some of the industry's brightest and most photostable dyes in a speedy and most convenient kit, MoBiTec provides Protein Labeling Kits as a perfect marriage of performance and convenience.



Figure 5. Labeling of an amino group (for instance, a lysine) on a biopolymer with a succinimidyl ester of a dye

## 6.1 Protein labeling kits for amino groups

| Order#         | Product                                                                           | Ex/Em (nm)            | Unit Size  |
|----------------|-----------------------------------------------------------------------------------|-----------------------|------------|
| 72058AS        | AnaTag™ Biotin Microscale Protein Labeling Kit                                    | N/A                   | 3 x 200 µg |
| 72057AS        | AnaTag <sup>™</sup> Biotin Protein Labeling Kit                                   | N/A                   | 3 x 10 mg  |
| FP-201-MNT-JB  | Mant Protein Labeling Kit                                                         | 335/440               | 10 x 1 mg  |
| 72056AS        | AnaTag <sup>™</sup> AMCA-X Microscale Protein Labeling Kit                        | 353/442               | 3 x 200 µg |
| 72055AS        | AnaTag <sup>™</sup> AMCA-X Protein Labeling Kit                                   | 353/442               | 3 x 5 mg   |
| 72142AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 405 Microscale Protein Labeling Kit | 407/429               | 2 x 200 µg |
| 72143AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 405 Protein Labeling Kit            | 407/429               | 3 x 5 mg   |
| FP-201-425-JB  | Atto 425 Protein Labeling Kit                                                     | 436/484               | 10 x 1 mg  |
| 72060AS        | AnaTag <sup>™</sup> 5 - FITC Microscale Protein Labeling Kit                      | 494/519               | 3 x 200 µg |
| 72059AS        | AnaTag™ 5 - FITC Protein Labeling Kit                                             | 494/519               | 3 x 5 mg   |
| 72054AS        | AnaTag <sup>™</sup> 5 - FAM Microscale Protein Labeling Kit                       | 495/520               | 3 x 200 µg |
| 72053AS        | AnaTag™ 5 - FAM Protein Labeling Kit                                              | 495/520               | 3 x 5 mg   |
| 72113AS        | AnaTag™ R-PE Labeling Kit                                                         | 498, 539, 565<br>/578 | 1 x 1 mg   |
| 72048AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 488 Microscale Protein Labeling Kit | 499/523               | 3 x 200 mg |
| 72047AS        | AnaTag™ HiLyte Fluor™ 488 Protein Labeling Kit                                    | 499/523               | 3 x 5 mg   |
| MFP-A1235      | MFP488 Protein Labeling Kit                                                       | 501/523               | 3 x 1 mg   |
| MFP-A2181      | MFP488 Antibody Labeling Kit                                                      | 501/523               | 5 x 1 mg   |
| FP-201-488-JB  | Atto 488 Protein Labeling Kit                                                     | 501/523               | 10 x 1 mg  |
| FP-201-532-JB  | Atto 532 Protein Labeling Kit                                                     | 532/553               | 10 x 1 mg  |
| 72112AS        | AnaTag™ B-PE Labeling Kit                                                         | 545, 563/578          | 1 x 1 mg   |
| 72064AS        | AnaTag <sup>™</sup> 5 - TAMRA Microscale Protein Labeling Kit                     | 547/574               | 3 x 200 µg |
| 72063AS        | AnaTag <sup>™</sup> 5 - TAMRA Protein Labeling Kit                                | 547/574               | 3 x 5 mg   |
| FP-201-CY3-JB  | Cy™3 Protein Labeling Kit                                                         | 550/570               | 10 x 1 mg  |
| 72046AS        | AnaTag™ HiLyte Fluor™ 555 Microscale Protein Labeling Kit                         | 553/568               | 3 x 200 µg |
| 72045AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 555 Protein Labeling Kit            | 553/568               | 3 x 5 mg   |
| FP-201-550-JB  | Atto 550 Protein Labeling Kit                                                     | 554/576               | 10 x 1 mg  |
| 72062AS        | AnaTag <sup>™</sup> 5 - ROX Microscale Protein Labeling Kit                       | 573/602               | 3 x 200 µg |
| 72061AS        | AnaTag <sup>™</sup> 5 - ROX Protein Labeling Kit                                  | 573/602               | 3 x 5 mg   |
| FP-201-TXR-JB  | Texas Red Protein Labeling Kit                                                    | 583/603               | 10 x 1 mg  |
| FP-201-590-JB  | Atto 590 Protein Labeling Kit                                                     | 594/624               | 10 x 1 mg  |
| FP-201-647N-JB | Atto 647N Protein Labeling Kit                                                    | 644/669               | 10 x 1 mg  |
| FP-201-CY5-JB  | Cy™5 Protein Labeling Kit                                                         | 649/670               | 10 x 1 mg  |
| 72111AS        | AnaTag™ APC Labeling Kit                                                          | 650/660               | 1 x 1 mg   |
| 72050AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 647 Microscale Protein Labeling Kit | 652/669               | 3 x 200 µg |
| 72049AS        | AnaTag <sup>™</sup> HiLyte Fluor™ 647 Protein Labeling Kit                        | 652/669               | 3 x 5 mg   |
| FP-201-655-JB  | Atto 655 Protein Labeling Kit                                                     | 663/684               | 10 x 1 mg  |
| 72118AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 680 Microscale Protein Labeling Kit | 678/699               | 3 x 200 µg |
| 72119AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 680 Protein Labeling Kit            | 678/699               | 3 x 5 mg   |
| 72044AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 750 Microscale Protein Labeling Kit | 754/778               | 3 x 200 µg |
| 72043AS        | AnaTag <sup>™</sup> HiLyte Fluor <sup>™</sup> 750 Protein Labeling Kit            | 754/778               | 3 x 5 mg   |

Page 21

## 6.2 Protein labeling kits for thiol groups

MoBiTec's versatile protein labeling kits for thiol groups are designed for fluorescent labeling of proteins with a small fluorophore. Each kit contains all reagents required for performing 3 separate labeling reactions resulting in a fluorescent protein-fluorophore conjugate. The outstanding photostability and quantum yield of the thoroughly selected dyes provide a wide range of applications such as protein activity and functional studies, and many more.

| Order#         | Product                        | Ex/Em (nm) | Unit Size |
|----------------|--------------------------------|------------|-----------|
| FP-202-425-JB  | Atto425 Protein Labeling Kit   | 436/484    | 3 rxn     |
| FP-202-488-JB  | Atto488 Protein Labeling Kit   | 501/523    | 3 rxn     |
| FP-202-532-JB  | Atto532 Protein Labeling Kit   | 532/550    | 3 rxn     |
| FP-202-550-JB  | Atto550 Protein Labeling Kit   | 554/576    | 3 rxn     |
| FP-202-590-JB  | Atto590 Protein Labeling Kit   | 594/624    | 3 rxn     |
| FP-202-TXR-JB  | Texas Red Protein Labeling Kit | 583/603    | 3 rxn     |
| FP-202-647N-JB | Atto647N Protein Labeling Kit  | 644/669    | 3 rxn     |
| FP-202-655-JB  | Atto655 Protein Labeling Kit   | 663/684    | 3 rxn     |

# 7. Nucleic Acid Labeling Kits and Reagents

## 7.1 The Label IT<sup>®</sup> Nucleic Acid Labeling Kits

The Mirus *Label*  $IT^{\mbox{\sc Tr}}$  chemical labeling reagents are composed of three regions (**Figure 6.**): the label (fluorophore or hapten) (green), the linker (yellow) which facilitates electrostatic interactions with nucleic acids and the reactive alkylating group (blue) that covalently attaches the *Label*  $IT^{\mbox{\sc Tr}}$  reagent to any reactive heteroatom within the nucleic acids. Attachment of the *Label*  $IT^{\mbox{\sc Tr}}$  Reagents to nucleic acids does not alter the structure of the nucleic acid or affect downstream hybridization performance, and as such, nucleic acids labeled using the *Label*  $IT^{\mbox{\sc Tr}}$  Reagents can be employed in multiple applications as defined by the researcher.

- Label any DNA or RNA template Suitable for a wide range of applications.
- One-step chemical method Easily and consistently control the labeling reactions.
- Adjustable labeling density Achieve high sensitivity with optimally labeled DNA and RNA.
- **Covalent mechanism** Permanent, non-destructive modification of nucleic acid residues is ideal for many diverse applications; labels do not impact hybridization performance.

"Labels DNA, RNA, plasmids, genomic DNA - you name it."





#### Mirus' Universal Label IT® Nucleic Acid Labeling Kits

Traditional nonradioactive Labeling methods (random priming, nick translation) are enzyme mediated and thus inherently difficult to control. In addition, these types of reactions generate Labeled products that are not representative of the starting nucleic acid but rather consist of a series of Labeled samples over a variable size range. The Labeling efficiency of these reactions is dictated by the enzyme's ability to incorporate a "Labeled-nucleotide" precursor into a growing nucleic acid chain. This Labeled-nucleotide is not the preferred substrate for the enzyme and may compromise the efficiency of the reaction and introduce a Labeling bias. In contrast, the Label IT<sup>®</sup> Labeling reactions are nondestructive, easy to control, and can be scaled up or down by either the size of the reaction or the desired Labeling density.

| Order#  | Product                                                      | Ex/Em (nm) | Unit Size     |
|---------|--------------------------------------------------------------|------------|---------------|
| MIR3925 | Label IT <sup>®</sup> AMINE Nucleic Acid Labeling Kit        | N/A        | Labels 25 µg  |
| MIR3900 | Label IT <sup>®</sup> AMINE Nucleic Acid Labeling Kit        | N/A        | Labels 100 µg |
| MIR3425 | Label IT <sup>®</sup> Biotin Nucleic Acid Labeling Kit       | N/A        | Labels 25 µg  |
| MIR3400 | Label IT <sup>®</sup> Biotin Nucleic Acid Labeling Kit       | N/A        | Labels 100 µg |
| MIR3325 | Label IT <sup>®</sup> Digoxin Nucleic Acid Labeling Kit      | N/A        | Labels 25 µg  |
| MIR3300 | Label IT <sup>®</sup> Digoxin Nucleic Acid Labeling Kit      | N/A        | Labels 100 µg |
| MIR3825 | Label IT <sup>®</sup> DNP Nucleic Acid Labeling Kit          | N/A        | Labels 25 µg  |
| MIR3800 | Label IT <sup>®</sup> DNP Nucleic Acid Labeling Kit          | N/A        | Labels 100 µg |
| MIR3225 | Label IT <sup>®</sup> Fluorescein Nucleic Acid Labeling Kit  | 492/518    | Labels 25 µg  |
| MIR3200 | Label IT <sup>®</sup> Fluorescein Nucleic Acid Labeling Kit  | 492/518    | Labels 100 µg |
| MIR4125 | Label IT <sup>®</sup> TM-Rhodamine Nucleic Acid Labeling Kit | 546/576    | Labels 25 µg  |
| MIR4100 | Label IT <sup>®</sup> TM-Rhodamine Nucleic Acid Labeling Kit | 546/576    | Labels 100 µg |
| MIR3625 | Label IT <sup>®</sup> Cy™3 Nucleic Acid Labeling Kit         | 550/570    | Labels 25 µg  |
| MIR3600 | Label IT <sup>®</sup> Cy™3 Nucleic Acid Labeling Kit         | 550/570    | Labels 100 µg |

| MIR3125 | Label IT <sup>®</sup> CX-Rhodamine Nucleic Acid Labeling Kit | 576/597 | Labels 25 µg  |
|---------|--------------------------------------------------------------|---------|---------------|
| MIR3100 | Label IT <sup>®</sup> CX-Rhodamine Nucleic Acid Labeling Kit | 576/597 | Labels 100 µg |
| MIR3725 | Label IT <sup>®</sup> Cy™5 Nucleic Acid Labeling Kit         | 649/670 | Labels 25 µg  |
| MIR3700 | Label IT <sup>®</sup> Cy™5 Nucleic Acid Labeling Kit         | 649/670 | Labels 100 µg |

#### Label IT<sup>®</sup> miRNA Labeling Kits

Rapid and sensitive non-enzymatic labeling of microRNA (miRNA) in total or enriched RNA samples for microarray analysis.

- Sensitive Detects subattomolar amounts of miRNA species.
- Accurate Labels all miRNAs present in the sample.
- Universal Labels total or enriched RNA from fresh, frozen or FFPE tissues including plants.
- Sequence Independent Labeling Labels all nucleotides with equal efficiency.
- Save Time Simple, one hour protocol.

| Order#  | Product                                            | Ex/Em (nm) | Unit Size        |
|---------|----------------------------------------------------|------------|------------------|
| MIR9410 | Label IT <sup>®</sup> miRNA labeling kit Biotin    | N/A        | 10 reactions     |
| MIR9450 | Label IT <sup>®</sup> miRNA labeling kit Biotin    | N/A        | 50 reactions     |
| MIR9510 | Label IT <sup>®</sup> miRNA labeling kit Cy™3      | 550/570    | 10 reactions     |
| MIR9550 | Label IT <sup>®</sup> miRNA labeling kit Cy™3      | 550/570    | 50 reactions     |
| MIR9610 | Label IT <sup>®</sup> miRNA labeling kit Cy™5      | 649/670    | 10 reactions     |
| MIR9650 | Label IT <sup>®</sup> miRNA labeling kit Cy™5      | 649/670    | 50 reactions     |
| MIR9305 | Label IT <sup>®</sup> miRNA labeling kit Cy™3/Cy™5 | see above  | 2 x 5 reactions  |
| MIR9325 | Label IT <sup>®</sup> miRNA labeling kit Cy™3/Cy™5 | see above  | 2 x 25 reactions |

## µArray<sup>®</sup> Label IT<sup>®</sup> Nucleic Acid Labeling Kits

Optimized labeling kit designed for single- or dual-channel microarray applications using biotin, fluorescein, Cy3<sup>™</sup>, and Cy5<sup>™</sup>.

- One-step Chemical Method Easily and consistently achieve optimized labeling densities for microarray applications.
- Sensitive Detection Confidently detect rare transcripts and small changes in gene expression.
- Versatile Labeling Suitable for labeling mRNA, cDNA, and cRNA templates with biotin, fluorescein, Cy™3, and Cy™5 dyes for expression profiling analysis.

| Order#  | Product                                                                 | Ex/Em (nm) | Unit Size        |
|---------|-------------------------------------------------------------------------|------------|------------------|
| MIR8010 | Label IT <sup>®</sup> µArray <sup>®</sup> Biotin Kit                    | N/A        | 10 reactions     |
| MIR8050 | Label IT <sup>®</sup> µArray <sup>®</sup> Biotin Kit                    | N/A        | 50 reactions     |
| MIR8105 | Label IT <sup>®</sup> µArray <sup>®</sup> Dual Kit (Biotin/Fluorescein) | 492/518    | 2 x 5 reactions  |
| MIR8125 | Label IT <sup>®</sup> µArray <sup>®</sup> Dual Kit (Biotin/Fluorescein) | 492/518    | 2 x 25 reactions |
| MIR8710 | Label IT <sup>®</sup> µArray <sup>®</sup> Cy™3 Labeling Kit             | 550/570    | 10 reactions     |
| MIR8750 | Label IT <sup>®</sup> µArray <sup>®</sup> Cy™3 Labeling Kit             | 550/570    | 50 reactions     |
| MIR8810 | Label IT <sup>®</sup> µArray <sup>®</sup> Cy™5 Labeling Kit             | 649/670    | 10 reactions     |
| MIR8850 | Label IT <sup>®</sup> µArray <sup>®</sup> Cy™5 Labeling Kit             | 649/670    | 50 reactions     |
| MIR8205 | Label IT <sup>®</sup> µArray <sup>®</sup> Cy™3/Cy™5 Labeling Kit        | see above  | 2 x 5 reactions  |
| MIR8225 | Label IT <sup>®</sup> µArray <sup>®</sup> Cy™3/Cy™5 Labeling Kit        | see above  | 2 x 25 reactions |

#### Label IT<sup>®</sup> Nucleic Acid Modifying Reagent

Efficient, direct, non-enzymatic attachment of functional groups to DNA and RNA

- Modify any DNA or RNA Template Direct, covalent attachment of amine functional groups to any nucleic acid.
- One-step Chemical Method Easily and consistently control the density of nucleic acid modification.
- Covalent Mechanism Permanent, non-destructive modification of nucleic acids which can then be conjugated to proteins or peptides, or attached to glass surfaces, or beads or plates.

| Order#  | Product                                               | Ex/Em (nm) | Unit Size     |
|---------|-------------------------------------------------------|------------|---------------|
| MIR3925 | Label IT <sup>®</sup> AMINE Nucleic Acid Labeling Kit | N/A        | Labels 25 µg  |
| MIR3900 | Label IT <sup>®</sup> AMINE Nucleic Acid Labeling Kit | N/A        | Labels 100 µg |

## 7.2 Nucleic acid labeling by PCR

MoBiTec PCR Labeling Kits are recommended for direct labeling of DNA by PCR using Taq polymerase. The fluorescently labeled dUTP analogs provided in the kits are optimized for enzymatic incorporation into DNA by a proprietary linker technology. Outstanding stability and quantum yield of the thoroughly selected fluorophores combined with high incorporation rates of the dye-dUTP analogs make the kits the ideal choice for all typical DNA labeling applications such as FISH, single molecule detection, microarray gene expression profiling, and other nucleic acid hybridization assays.

| Order#         | Product                                 | Ex/Em (nm) | Unit Size     |
|----------------|-----------------------------------------|------------|---------------|
| FT-LNT10001-01 | Biotin PCR Labeling Kit                 | N/A        | 100 reactions |
| FT-LNT10001-05 | Biotin PCR Labeling Kit                 | N/A        | 500 reactions |
| FT-LNT10010-01 | Atto425 PCR Labeling Kit                | 436/484    | 10 reactions  |
| FT-LNT10010-05 | Atto425 PCR Labeling Kit                | 436/484    | 50 reactions  |
| FT-LNT10020-01 | Atto488 PCR Labeling Kit                | 501/523    | 10 reactions  |
| FT-LNT10020-05 | Atto488 PCR Labeling Kit                | 501/523    | 50 reactions  |
| FT-LNT10032-01 | Atto532 PCR Labeling Kit                | 532/553    | 10 reactions  |
| FT-LNT10032-05 | Atto532 PCR Labeling Kit                | 532/553    | 50 reactions  |
| FT-LNT10055-01 | Cy3 PCR Labeling Kit                    | 550/570    | 10 reactions  |
| FT-LNT10055-05 | Cy3 PCR Labeling Kit                    | 550/570    | 50 reactions  |
| FT-LNT10040-05 | Texas Red <sup>®</sup> PCR Labeling Kit | 583/503    | 50 reactions  |
| FT-LNT10040-01 | Texas Red <sup>®</sup> PCR Labeling Kit | 583/603    | 10 reactions  |
| FT-LNT10065-01 | Cy5 PCR Labeling Kit                    | 643/667    | 10 reactions  |
| FT-LNT10065-05 | Cy5 PCR Labeling Kit                    | 643/667    | 50 reactions  |
| FT-LNT10070-01 | Atto655 PCR Labeling Kit                | 663/684    | 10 reactions  |
| FT-LNT10070-05 | Atto655 PCR Labeling Kit                | 663/684    | 50 reactions  |

## 7.3 Nucleic acid labeling by nick translation

MoBiTec NT Labeling Kits are recommended for direct labeling of DNA by nick translation using DNA polymerase I / DNase I. The fluorescently labeled dUTP analogs provided in the kits are optimized for enzymatic incorporation into DNA by a proprietary linker technology. Outstanding stability and quantum yield of the thoroughly selected fluorophores combined with high incorporation rates of the dye-dUTP analogs make the kits the ideal choice for all typical DNA labeling applications such as FISH, single molecule detection, microarray gene expression profiling, and other nucleic acid hybridization assays.

| Order#         | Product                  | Ex/Em (nm) | Unit Size    |
|----------------|--------------------------|------------|--------------|
| FT-LNT20010-01 | Atto425 NT Labeling Kit  | 436/484    | 10 reactions |
| FT-LNT20010-02 | Atto425 NT Labeling Kit  | 436/484    | 50 reactions |
| FT-LNT20020-01 | Atto488 NT Labeling Kit  | 501/523    | 10 reactions |
| FT-LNT20020-02 | Atto488 NT Labeling Kit  | 501/523    | 50 reactions |
| FT-LNT20030-01 | Atto550 NT Labeling Kit  | 554/576    | 10 reactions |
| FT-LNT20030-02 | Atto550 NT Labeling Kit  | 554/576    | 50 reactions |
| FT-LNT20060-01 | Atto647N NT Labeling Kit | 663/684    | 10 reactions |
| FT-LNT20060-02 | Atto647N NT Labeling Kit | 663/684    | 50 reactions |

## 7.4 Fluorescently labeled dUTP nucleotides



Figure 7. The spectral continuum in the range of visible light, indicating wavelengths of important laser types

#### © MoBiTec GmbH, 2016

| Order#         | Product                     | Ex/Em (nm) | Unit Size        |
|----------------|-----------------------------|------------|------------------|
| MFP-D350-34    | MFP™-DY-350-dUTP            | 353/432    | 100 nmole        |
| MFP-D405-34    | MFP™-DY-405-dUTP            | 400/423    | 100 nmole        |
| MFP-D415-34    | MFP™-DY-415-dUTP            | 418/467    | 100 nmole        |
| FT-LNT50425-01 | Aminoallyl-dUTP - ATTO-425  | 436/484    | 10 µl (1 mM)     |
| FT-LNT50425-02 | Aminoallyl-dUTP - ATTO-425  | 436/484    | 5 x 10 µl (1 mM) |
| MFP-D485XL-34  | MFP™-DY-485XL-dUTP          | 485/560    | 100 nmole        |
| MFP-D490-34    | MFP™-DY-490-dUTP            | 491/515    | 100 nmole        |
| MFP-D495-34    | MFP™-DY-495-dUTP            | 493/521    | 100 nmole        |
| MFP-D480XL-34  | MFP™-DY-480XL-dUTP          | 500/630    | 100 nmole        |
| FT-LNT50488-01 | Aminoallyl-dUTP - ATTO-488  | 501/523    | 20 µl (1 mM)     |
| MFP-D481XL-34  | MFP™-DY-481XL-dUTP          | 515/650    | 100 nmole        |
| MFP-D520XL-34  | MFP™-DY-520XL-dUTP          | 520/664    | 100 nmole        |
| MFP-D521XL-34  | MFP™-DY-521XL-dUTP          | 523/668    | 100 nmole        |
| MFP-D530-34    | MFP™-DY-530-dUTP            | 539/561    | 100 nmole        |
| MFP-D555-34    | MFP™-DY-555-dUTP            | 547/572    | 100 nmole        |
| MFP-D556-34    | MFP™-DY-556-dUTP            | 548/573    | 100 nmole        |
| MFP-D554-34    | MFP™-DY-554-dUTP            | 551/572    | 100 nmole        |
| FT-LNT50550-01 | Aminoallvl-dUTP - ATTO-550  | 554/576    | 10 µl (1 mM)     |
| FT-LNT50550-02 | Aminoallyl-dUTP - ATTO-550  | 554/576    | 5 x 10 µl (1 mM) |
| MFP-D560-34    | MFP™-DY-560-dUTP            | 559/578    | 100 nmole        |
| MFP-D547P1-34  | MFP™-DY-547P1-dUTP          | 560/575    | 100 nmole        |
| MFP-D549P1-34  | MFP™-DY-549P1-dUTP          | 560/575    | 100 nmole        |
| MFP-D590-34    | MFP™-DY-590-dUTP            | 580/599    | 100 nmole        |
| MFP-D591-34    | MFP™-DY-591-dUTP            | 581/598    | 100 nmole        |
| MFP-D594-34    | MFP™-DY-594-dUTP            | 594/615    | 100 nmole        |
| MFP-D605-34    | MFP™-DY-605-dUTP            | 600/624    | 100 nmole        |
| MFP-D634-34    | MFP™-DY-634-dUTP            | 635/658    | 100 nmole        |
| MFP-D630-34    | MFP™-DY-630-dUTP            | 636/657    | 100 nmole        |
| MFP-D632-34    | MFP™-DY-632-dUTP            | 637/657    | 100 nmole        |
| MFP-D633-34    | MFP™-DY-633-dUTP            | 637/657    | 100 nmole        |
| MFP-D631-34    | MFP™-DY-631-dUTP            | 637/658    | 100 nmole        |
| MFP-D636-34    | MFP™-DY-636-dUTP            | 645/671    | 100 nmole        |
| MFP-D635-34    | MFP™-DY-635-dUTP            | 647/671    | 100 nmole        |
| MFP-D647P1-34  | MFP™-DY-647P1-dUTP          | 653/672    | 100 nmole        |
| MFP-D650-34    | MFP™-DY-650-dUTP            | 653/674    | 100 nmole        |
| MFP-D649P1-34  | MFP™-DY-649P1-dUTP          | 655/676    | 100 nmole        |
| MFP-D651-34    | MFP™-DY-651-dUTP            | 656/678    | 100 nmole        |
| FT-LNT50647-01 | Aminoallvl-dUTP - ATTO-647N | 663/684    | 10 µl (1 mM)     |
| FT-LNT50647-02 | Aminoallyl-dUTP - ATTO-647N | 663/684    | 5 x 10 µl (1 mM) |
| MFP-D677-34    | MFP™-DY-677-dUTP            | 673/694    | 100 nmole        |
| MFP-D682-34    | MFP™-DY-682-dUTP            | 690/709    | 100 nmole        |
| MFP-D681-34    | MFP™-DY-681-dUTP            | 691/708    | 100 nmole        |
| MFP-D703-34    | MFP™-DY-703-dUTP            | 705/721    | 100 nmole        |
| MFP-D731-34    | MFP™-DY-731-dUTP            | 736/760    | 100 nmole        |
| MFP-D776-34    | MFP™-DY-776-dUTP            | 771/793    | 100 nmole        |
| MFP-D780-34    | MFP™-DY-780-dUTP            | 782/800    | 100 nmole        |
| MFP-D781-34    | MFP™-DY-781-dUTP            | 783/800    | 100 nmole        |

# 8. Kits and Reagents for Click-Chemistry

Click-Chemistry was first introduced by K. Berry Sharpless in 2001. It describes a chemical reaction which builds substances by joining small units together. Click-reactions are fast and purposeful with high yields. The most popular click-reaction is azide alkyne Huisgen cycloaddition with Copper (Cu) as catalyst at room temperature. You can use this highly efficient technology for labeling of DNA or RNA via solid-phase synthesis or PCR. Furthermore, it is possible to introduce up to three different modifications onto one position of the same DNA strand. Of course, we offer different kinds of non-fluorescent and fluorescent labels.

## 8.1 Oligonucleotide labeling by Click-Chemistry

| Order#       | Product                             | Ex/Em (nm) | Unit Size |
|--------------|-------------------------------------|------------|-----------|
| MFPCCK-002   | ClickChem-Kit Biotin                | N/A        | 1 Kit     |
| MFPCCK-002-5 | ClickChem-Kit Biotin                | N/A        | 5 Kits    |
| MFPCCK-004   | ClickChem-Kit Dabcyl                | 430/none   | 1 Kit     |
| MFPCCK-004-5 | ClickChem-Kit Dabcyl                | 430/none   | 5 Kits    |
| MFPCCK-006   | ClickChem-Kit MFP-Eterneon™ 350/455 | 350/455    | 1 Kit     |
| MFPCCK-006-5 | ClickChem-Kit MFP-Eterneon™ 350/455 | 350/455    | 5 Kits    |

### © MoBiTec GmbH, 2016

| MFPCCK-001     | ClickChem-Kit Fluorescein       | 492/518 | 1 Kit     |
|----------------|---------------------------------|---------|-----------|
| MFPCCK-001-5   | ClickChem-Kit Fluorescein       | 492/518 | 5 Kits    |
| MFPCCK-003     | ClickChem-Kit TAMRA             | 546/575 | 1 Kit     |
| MFPCCK-003-5   | ClickChem-Kit TAMRA             | 546/575 | 5 Kits    |
| MFPCCMI-003-1  | Click-Solution (DMSO/t-Butanol) | -       | 1 ml      |
| MFPCCMI-003-10 | Click-Solution (DMSO/t-Butanol) | -       | 10 x 1 ml |

# 8.2 Fluorescent azides

| Order#          | Product                                             | Ex/Em (nm) | Unit Size |
|-----------------|-----------------------------------------------------|------------|-----------|
| MFPCCFA-009-1   | Dabsyl Azide                                        | 436/none   | 1 mg      |
| MFPCCFA-009-5   | Dabsyl Azide                                        | 436/none   | 5 mg      |
| MFPCCFA-002-1   | Dabcyl Azide                                        | 453/none   | 1 mg      |
| MFPCCFA-002-5   | Dabcyl Azide                                        | 453/none   | 5 mg      |
| MFPCCFA-002-100 | Dabcyl Azide                                        | 453/none   | 100 mg    |
| MFPCCFA-016-1   | Dansyl Azide                                        | 333/518    | 1 mg      |
| MFPCCFA-016-5   | Dansyl Azide                                        | 333/518    | 5 mg      |
| MFPCCFA-017-1   | Pyrene Azide                                        | 350/380    | 1 mg      |
| MFPCCFA-017-5   | Pyrene Azide                                        | 350/380    | 5 mg      |
| MFPCCFA-011-1   | MFP-Eterneon™-350/455 Azide                         | 350/455    | 1 mg      |
| MFPCCFA-011-5   | MFP-Eterneon™-350/455 Azide                         | 350/455    | 5 mg      |
| MFPCCFA-011-10  | MFP-Eterneon™-350/455 Azide                         | 350/455    | 10 mg     |
| MFPCCFA-012-1   | MFP-Eterneon™-384/480 Azide                         | 384/480    | 1 mg      |
| MFPCCFA-012-5   | MFP-Eterneon™-384/480 Azide                         | 384/480    | 5 mg      |
| MFPCCFA-012-10  | MFP-Eterneon™-384/480 Azide                         | 384/480    | 10 mg     |
| MFPCCFA-013-1   | MFP-Eterneon™-393/523 Azide                         | 393/523    | 1 mg      |
| MFPCCFA-013-5   | MFP-Eterneon™-393/523 Azide                         | 393/523    | 5 mg      |
| MFPCCFA-013-10  | MFP-Eterneon™-393/523 Azide                         | 393/523    | 10 mg     |
| MFPCCFA-014-1   | MFP-Eterneon™-394/507 Azide                         | 394/507    | 1 mg      |
| MFPCCFA-014-5   | MFP-Eterneon™-394/507 Azide                         | 394/507    | 5 mg      |
| MFPCCFA-014-10  | MFP-Eterneon™-394/507 Azide                         | 394/507    | 10 mg     |
| MFPCCFA-015-1   | MFP-Eterneon™-480/635 Azide                         | 480/635    | 1 mg      |
| MFPCCFA-015-5   | MFP-Eterneon™-480/635 Azide                         | 480/635    | 5 mg      |
| MFPCCFA-015-10  | MFP-Eterneon™-480/635 Azide                         | 480/635    | 10 mg     |
| MFPCCFA-004-1   | Fluorescein Azide (5-FAM)                           | 492/518    | 1 mg      |
| MFPCCFA-004-5   | Fluorescein Azide (5-FAM)                           | 492/518    | 5 mg      |
| MFPCCFA-005-1   | Fluorescein Azide (5/6-FAM)                         | 494/519    | 1 mg      |
| MFPCCFA-005-5   | Fluorescein Azide (5/6-FAM)                         | 494/519    | 5 mg      |
| MFPCCFA-001-1   | Fluorescein Azide (6-FAM)                           | 495/517    | 1 mg      |
| MFPCCFA-001-5   | Fluorescein Azide (6-FAM)                           | 495/517    | 5 mg      |
| MFPCCFA-001-10  | Fluorescein Azide (6-FAM)                           | 495/517    | 10 mg     |
| MFPCCFA-001-100 | Fluorescein Azide (6-FAM)                           | 495/517    | 100 mg    |
| MFP-D480XL-10-1 | MFP™-DY-480XL-Azide                                 | 500/630    | 1 mg      |
| MFP-D530-10-1   | MFP™-DY-530-Azide                                   | 539/561    | 1 mg      |
| MFPCCFA-007-1   | Chromeo™ 546 Azide                                  | 545/561    | 1 mg      |
| MFPCCFA-007-5   | Chromeo™ 546 Azide                                  | 545/561    | 5 mg      |
| MFPCCFA-008-5   | 5-Carboxytetramethylrhodamine Azide (5-TAMRA-Azide) | 547/573    | 5 mg      |
| MFPCCFA-008-100 | 5-Carboxytetramethylrhodamine Azide (5-TAMRA-Azide) | 547/573    | 100 mg    |
| MFPCCFA-008-1   | 5-Carboxytetramethylrhodamine Azide (5-TAMRA-Azide) | 547/574    | 1 mg      |
| MFPCCFA-008-10  | 5-Carboxytetramethylrhodamine Azide (5-TAMRA-Azide) | 547/574    | 10 mg     |
| MFPCCFA-006-1   | Chromeo™ 642 Azide                                  | 642/660    | 1 mg      |
| MFPCCFA-006-5   | Chromeo™ 642 Azide                                  | 642/660    | 5 mg      |
| MFP-D636-10-1   | MFP™-DY-636-Azide                                   | 645/671    | 1 mg      |
| MFP-D682-10     | MFP™-DY-682-Azide                                   | 690/709    | 1 mg      |
| MFP-D681-10     | MFP™-DY-681-Azide                                   | 691/708    | 1 mg      |
| MFP-D734-10     | MFP™-DY-734-Azide                                   | 736/759    | 1 mg      |
| MFP-D800-10     | MFP™-DY-800-Azide                                   | 777/791    | 1 mg      |
| MFP-D782-10     | MFP™-DY-782-Azide                                   | 783/800    | 1 mg      |

## 8.3 Non-fluorescent azides

| Order#          | Product        | Ex/Em (nm) | Unit Size |
|-----------------|----------------|------------|-----------|
| MFPCCFA-003-1   | Biotin Azide   | N/A        | 1 mg      |
| MFPCCFA-003-5   | Biotin Azide   | N/A        | 5 mg      |
| MFPCCFA-003-10  | Biotin Azide   | N/A        | 10 mg     |
| MFPCCFA-003-100 | Biotin Azide   | N/A        | 100 mg    |
| MFPCCL-001-10   | NHS-PEG4-Azide | N/A        | 10 mg     |

MoBiTec GmbH, Germany ● Phone: +49 551 70722 0 ● Fax: +49 551 70722 22 ● E-Mail: info@mobitec.com ● www.mobitec.com

|               |                             | •   |       |
|---------------|-----------------------------|-----|-------|
| MFPCCL-001-5  | NHS-PEG4-Azide              | N/A | 5 mg  |
| MFPCCL-002-10 | PEG24-Azide                 | N/A | 10 mg |
| MFPCCL-002-5  | PEG24-Azide                 | N/A | 5 mg  |
| MFPCCL-003-10 | PEG8-Azide                  | N/A | 10 mg |
| MFPCCL-003-5  | PEG8-Azide                  | N/A | 5 mg  |
| MFPCCL-004-10 | HO-PEG2-Azide               | N/A | 10 mg |
| MFPCCL-004-5  | HO-PEG2-Azide               | N/A | 5 mg  |
| MFPCCL-005-10 | H <sub>2</sub> N-PEG8-Azide | N/A | 10 mg |
| MFPCCL-005-5  | H <sub>2</sub> N-PEG8-Azide | N/A | 5 mg  |
| MFPCCL-006-10 | PEG7-Bis-Azide              | N/A | 10 mg |
| MFPCCL-006-5  | PEG7-Bis-Azide              | N/A | 5 mg  |
| MFPCCL-010-10 | Mal-PEG3-Azide              | N/A | 10 mg |
| MFPCCL-010-5  | Mal-PEG3-Azide              | N/A | 5 mg  |
| MFPCCL-011-10 | H <sub>2</sub> N-PEG3-Azide | N/A | 10 mg |
| MFPCCL-011-5  | H <sub>2</sub> N-PEG3-Azide | N/A | 5 mg  |

For more reagents related to Click-Chemistry, please visit our website www.mobitec.com.

# 9. Contact and Support

MoBiTec GmbH ◆ Lotzestrasse 22a ◆ D-37083 Goettingen ◆ Germany

Customer Service – General inquiries & orders

phone: +49 (0)551 707 22 0 fax: +49 (0)551 707 22 22 e-mail: order@mobitec.com

MoBiTec in your area: Find your local distributor at

phone: +49 (0)551 707 22 70 fax: +49 (0)551 707 22 77

Technical Service – Product information

e-mail: info@mobitec.com

www.mobitec.com

Bulk quantities of dyes not listed in this brochure, for instance, cyanine dyes, are negotiable!

- MFP<sup>™</sup> is a trademark of MoBiTec GmbH
- Cy<sup>™</sup> is a trademark of Amersham Biosciences Corp.
- Label IT<sup>®</sup> and µArray<sup>®</sup> are registered trademarks of Mirus Corp.
- Texas Red<sup>®</sup> is a registered trademark of Molecular Probes

© 2016, MoBiTec GmbH. All rights reserved.