Anti-Dehydrin (serum)

(Cat#: AS07 206)
AS07_206
AS07_206_1
Description
  • Immunogen: KLH-conjugated peptide sequence TGEKKGIMDKIKEKLPGQH of K-segment conserved in a wide range of plant species
  • Host: Rabbit
  • Clonality: Polyclonal
  • Purity: Serum
  • Format: Lyophilized
  • Quantity: 50 µl
  • Reconstitution: For reconstitution add 50 µl of sterile, deionized water
  • Storage: Store lyophilized/reconstituted at -20°C; once reconstituted make aliquots to avoid repeated freeze-thaw cycles. Please remember to spin the tubes briefly prior to opening them to avoid any losses that might occur from material adhering to the cap or sides of the tube.
  • Tested applications: Western blot (WB)
  • Recommended dilutions: 1 : 1000 (WB)
  • Expected | apparent MW: 9-200 kDa
  • Confirmed reactivity: Agostis stolonifera cv. ‘Penncross’, Betula pubescens, Betula pendula, Betual pendula var. carelica, Hordeum spontaneum, Larix cajanderi, Malus spp., Picea obovata, Picea abies, Picea glauca, Pinus sylvestris, Pinus strobus, Pinus sylvestris, Spinacia oleracea, Triticum aestivum, Vitis vinifera
  • Not reactive in: No confirmed exceptions from predicted reactivity are currently known
  • Dehydrins are stress proteins involved in formation of plant protective reactions against dehydration. They are normally synthesized in maturating seeds during their dessication, as well as in vegetative tissues of plants treated with abscisic acid or exposed to environmental stress factors that result in cellular dehydration.
  • Vítámvás et al. (2021) Relationship between WCS120 Protein Family Accumulation and Frost Tolerance in Wheat Cultivars Grown under Different Temperature Treatments. Plants (Basel). 2021 May 31;10(6):1114. doi: 10.3390/plants10061114. PMID: 34073120; PMCID: PMC8228299.Kartashov et al. (2021) Quantitative analysis of differential dehydrin regulation in pine and spruce seedlings under water deficit. Plant Physiol Biochem. 2021 Mar 3;162:237-246. doi: 10.1016/j.plaphy.2021.02.040. Epub ahead of print. PMID: 33706184.Vazquez-Hernandez et al. (2020). Functional characterization of VviDHN2 and VviDHN4 dehydrin isoforms from Vitis vinifera (L.): An in silico and in vitro approach. Plant Physiol Biochem. 2021 Jan;158:146-157. doi: 10.1016/j.plaphy.2020.12.003. Epub 2020 Dec 4. PMID: 33310482.Rachenko and Rachenko (2020). The variation of the content of dehydrin proteins in the bark of Malus app. trees differing in winter hardinessin Southern Cisbaikalia conditions . Zemdirbyste-Agriculture, vol. 107, No. 2 (2020), p. 185–190 DOI 10.13080/z-a.2020.107.024.Lv et al. (2018). Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC Plant Biol. 2018 Nov 26;18(1):299. doi: 10.1186/s12870-018-1511-2.
  • According to Borovskii et al. 2019, dehydrin detection level can be increased by obtaining a thermostable fraction.

Boca Scientific is your premiere source for high-quality, innovative solutions for Cell Biology, Molecular Biology, Immunology, genetics and other lab products and reagents. We bring leading-edge products from our own-line and around the world to laboratories in the US and Canada. Our goal is to offer excellent solutions to drive research and discoveries backed by superior customer support.

Recently Viewed Products